
The Orocos Component
Builder's Manual

Open RObot COntrol Software

2.6.0

The Orocos Component Builder's Manual : Open RObot COntrol
Software : 2.6.0
Copyright © 2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012 Peter Soetens
Copyright © 2006,2007,2008 FMTC

Abstract

This document gives an introduction to building your own components for the Orocos [http://www.orocos.org]
(Open RObot COntrol Software) project.

Orocos Real-Time Toolkit Version 2.6.0.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation, with no Invariant Sections, with no Front-Cover Texts, and with no Back-
Cover Texts. A copy of this license can be found at http://www.fsf.org/copyleft/fdl.html.

http://www.orocos.org
http://www.orocos.org
http://www.fsf.org/copyleft/fdl.html

iii

Table of Contents
1. How to Read this Manual ... 1

1. Component Interfaces ... 1
2. Component Implementation .. 1
3. Orocos Toolchain Overview ... 1

2. Setting up the Component Interface .. 3
1. Introduction ... 3
2. Hello World ! ... 5

2.1. Using the Deployer .. 5
2.2. Starting your First Application ... 6
2.3. Displaying a TaskContext .. 8
2.4. Listing the Interface ... 10
2.5. Calling an Operation .. 10
2.6. Sending a Operation .. 10
2.7. Changing Values ... 11
2.8. Reading and Writing Ports ... 11
2.9. Last Words .. 11

3. Creating a Basic Component ... 12
3.1. Task Application Code ... 14
3.2. Starting a Component .. 16
3.3. Data Flow Ports ... 18
3.4. The OperationCaller/Operation Interface ... 23
3.5. The Attributes and Properties Interface ... 28
3.6. A TaskContext's Error states .. 30

4. Connecting Services ... 32
4.1. Connecting Peer Components ... 32
4.2. Setting up the Data Flow ... 33
4.3. Disconnecting Tasks .. 34

5. Providing and Requiring Services .. 34
6. Using Tasks ... 36

6.1. Task Property Configuration and XML format 36
6.2. Task Scripts .. 38

7. Deploying Components ... 40
7.1. Overview .. 40
7.2. Embedded TaskCore Deployment ... 41
7.3. Embedded TaskContext Deployment: C++ Interface 41
7.4. Full TaskContext Deployment: Dynamic Interface 41
7.5. Putting it together .. 42

8. Advanced Techniques ... 42
8.1. Polymorphism : Task Interfaces .. 42

3. Orocos RTT Scripting Reference ... 46
1. Introduction .. 46
2. General Scripting Concepts ... 46

2.1. Comments ... 46
2.2. Identifiers .. 46
2.3. Expressions ... 47
2.4. Parsing and Loading Programs ... 50

3. Orocos Program Scripts .. 51
3.1. Program Execution Semantics .. 51
3.2. Program Syntax ... 52
3.3. Setting Task Attributes and Properties ... 54

The Orocos Component Builder's Manual

iv

3.4. function ... 54
3.5. Calling functions ... 55
3.6. return .. 55
3.7. Waiting : The 'yield' statement .. 56

4. Starting and Stopping Programs from scripts .. 56
5. Orocos State Descriptions : The Real-Time State Machine 57

5.1. Introduction ... 57
5.2. StateMachine Mechanism ... 57
5.3. Parsing and Loading StateMachines .. 59
5.4. Defining StateMachines ... 60
5.5. Instantiating Machines: SubMachines and RootMachines 64
5.6. Starting and Stopping StateMachines from scripts 68

6. Program and State Example .. 71
4. Distributing Orocos Components with CORBA .. 75

1. The CORBA Transport ... 75
2. Setup CORBA Naming (Required!) ... 75
3. Connecting CORBA components .. 76
4. In-depth information ... 76

4.1. Status .. 76
4.2. Limitations .. 77

5. Code Examples .. 77
6. Timing and time-outs ... 78
7. Orocos Corba Interfaces ... 79
8. The Naming Service ... 79

8.1. Example .. 79
5. Real-time Inter-Process Data Flow using MQueue .. 81

1. Overview ... 81
1.1. Status .. 81
1.2. Requirements and Setup ... 81

2. Transporting user types. .. 81
2.1. Transporting 'simple' data types .. 81
2.2. Transporting 'complex' data types ... 82

3. Connecting ports using the MQueue transport .. 83
3.1. Bare C++ connection ... 83
3.2. CORBA managed connections .. 84

6. Core Primitives Reference .. 87
1. Introduction .. 87
2. Activities ... 87

2.1. Executing a Function Periodically ... 87
2.2. Non Periodic Activity Semantics .. 89
2.3. Selecting the Scheduler .. 90
2.4. Custom or Slave Activities ... 90
2.5. Configuring the Threads from Activities ... 91

3. Signals ... 92
3.1. Signal Basics ... 92
3.2. setup() and the Handle object ... 94

4. Time Measurement and Conversion ... 95
4.1. The TimeService ... 95
4.2. Usage Example .. 95

5. Attributes ... 95
6. Properties ... 96

6.1. Introduction ... 96

The Orocos Component Builder's Manual

v

6.2. Grouping Properties in a PropertyBag ... 96
6.3. Marshalling and Demarshalling Properties (Serialization) 97

7. Extra Stuff ... 98
7.1. Buffers and DataObjects .. 98

8. Logging ... 99
7. OS Abstraction Reference ... 101

1. Introduction .. 101
1.1. Real-time OS Abstraction ... 101

2. The Operating System Interface .. 101
2.1. Basics ... 101

3. OS directory Structure .. 102
3.1. The RTAI/LXRT OS target .. 102
3.2. Porting Orocos to other Architectures / OSes 102
3.3. OS Header Files .. 103

4. Using Threads and Real-time Execution of Your Program 103
4.1. Writing the Program main() .. 103
4.2. The Orocos Thread .. 103
4.3. Synchronisation Primitives ... 105

8. Hardware Device Interfaces .. 107
1. The Orocos Device Interface (DI) .. 107

1.1. Structure .. 107
1.2. Example .. 108

2. The Device Interface Classes .. 108
2.1. Physical IO .. 108
2.2. Logical Device Interfaces ... 109

3. Porting Device Drivers to Device Interfaces ... 109
4. Interface Name Serving .. 109

vi

List of Figures
1.1. Orocos Toolchain as Middleware ... 2
2.1. Typical application example for distributed control .. 4
2.2. Dynamic vs static loading of components ... 7
2.3. Schematic Overview of the Hello Component. .. 9
2.4. Schematic Overview of a TaskContext .. 13
2.5. TaskContext State Diagram .. 14
2.6. Executing a TaskContext ... 16
2.7. Data flow ports are connected with a connection policy 19
2.8. Extended TaskContext State Diagram ... 30
2.9. Possible Run-Time failure. ... 31
2.10. Component Deployment Levels .. 40
2.11. Example Component Deployment. .. 42
3.1. State Change Semantics in Reactive Mode .. 58
3.2. State Change Semantics in Automatic Mode ... 59
7.1. OS Interface overview ... 102
8.1. Device Interface Overview ... 108

vii

List of Tables
2.1. Execution Types .. 24
2.2. Call/Send and ClientThread/OwnThread Combinations .. 27
2.3. Operation Return & Argument Types ... 27
2.4. C++ & Property Types .. 37
3.1. array and string constructors .. 48
6.1. Logger Log Levels .. 99
7.1. Header Files .. 103
8.1. Physical IO Classes ... 108

viii

List of Examples
2.1. Setting up a Service ... 34
2.2. Using a Service ... 35
3.1. string and array creation .. 49
3.2. StateMachine Definition Format ... 61
3.3. StateMachine Example (state.osd) ... 71
3.4. Program example (program.ops) ... 73
6.1. Example Periodic Thread Interaction .. 92
6.2. Using Signals .. 92
6.3. Signal Types ... 94
6.4. Creating attributes ... 95
6.5. Using properties .. 96
6.6. Accessing a Buffer .. 98
6.7. Accessing a DataObject ... 99
6.8. Using the Logger class ... 100
7.1. Locking a Mutex ... 106
8.1. Using the name service .. 109

1

Chapter 1. How to Read this Manual
This manual is for Software developers who wish to write their own software components
using the Orocos Toolchain. The HTML version of this manual links to the API documen-
tation of all classes.

1. Component Interfaces
The most important Chapters to get started building a component are presented first. Orocos
components are implemented using the 'TaskContext' class and the following Chapter ex-
plains step by step how to define the interface of your component, such that you can interact
with your component from a user interface or other component.

2. Component Implementation
For implementing algorithms within your component, various C++ function hooks are present
in wich you can place custom C++ code. As your component's functionality grows, you can
extend its scripting interface and call your algorithms from a script.

The Orocos Scripting Chapter details how to write programs and state machines. "Advanced
Users" may benefit from this Chapter as well since the scripting language allows to 'program'
components without recompiling the source.

If you're familiar with the Lua programming language, you can also implement compo-
nents an statemachines in real-time Lua scripts. Check out the Lua Cookbook [http://
www.orocos.org/wiki/orocos/toolchain/luacookbook] website.

3. Orocos Toolchain Overview
The Toolchain allows setup, distribution and the building of real-time software components.
It is sometimes refered to as 'middleware' because it sits between the application and the
Operating System. It takes care of the real-time communication and execution of software
components.

http://www.orocos.org/wiki/orocos/toolchain/luacookbook
http://www.orocos.org/wiki/orocos/toolchain/luacookbook
http://www.orocos.org/wiki/orocos/toolchain/luacookbook

How to Read this Manual

2

Figure 1.1. Orocos Toolchain as Middleware

The Toolchain [http://www.orocos.org/toolchain] provides a limited set of components for
application development. The Orocos Component Library (OCL) is a collection of infra-
structure components for building applications.

The Toolchain contains components for component deployment [http://www.orocos.org/
stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html] and distribution [http://
www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-transports-corba.html], re-
al-time status logging [http://www.orocos.org/wiki/Using_real-time_logging] and
data reporting [http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/oro-
cos-reporting.html]. It also contains tools for creating component pack-
ages [http://www.orocos.org/wiki/orocos/toolchain/getting-started/using-orocreate-pkg],
extremely simple build instructions [http://www.orocos.org/wiki/orocos/toolchain/get-
ting-started/cmake-and-building] and code generators [http://www.rock-robotics.org/
orogen/] for plain C++ structs and ROS messages [http://www.ros.org/wi-
ki/orocos_toolchain_ros].

http://www.orocos.org/toolchain
http://www.orocos.org/toolchain
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-transports-corba.html
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-transports-corba.html
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-transports-corba.html
http://www.orocos.org/wiki/Using_real-time_logging
http://www.orocos.org/wiki/Using_real-time_logging
http://www.orocos.org/wiki/Using_real-time_logging
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-reporting.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-reporting.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-reporting.html
http://www.orocos.org/wiki/orocos/toolchain/getting-started/using-orocreate-pkg
http://www.orocos.org/wiki/orocos/toolchain/getting-started/using-orocreate-pkg
http://www.orocos.org/wiki/orocos/toolchain/getting-started/using-orocreate-pkg
http://www.orocos.org/wiki/orocos/toolchain/getting-started/cmake-and-building
http://www.orocos.org/wiki/orocos/toolchain/getting-started/cmake-and-building
http://www.orocos.org/wiki/orocos/toolchain/getting-started/cmake-and-building
http://www.rock-robotics.org/orogen/
http://www.rock-robotics.org/orogen/
http://www.rock-robotics.org/orogen/
http://www.ros.org/wiki/orocos_toolchain_ros
http://www.ros.org/wiki/orocos_toolchain_ros
http://www.ros.org/wiki/orocos_toolchain_ros

3

Chapter 2. Setting up
the Component Interface

This document describes the Orocos Component Model, which allows to design Real-Time software
components which transparently communicate with each other.

1. Introduction
This manual documents how multi-threaded components can be defined in Orocos such that
they form a thread-safe robotics/machine control application. Each control component is de-
fined as a "TaskContext", which defines the environment or "context" in which an application
specific task is executed. The context is described by the three Orocos primitives: Operation,
Property, and Data Port. This document defines how a user can write his own task context
and how it can be used in an application.

Setting up the Component Interface

4

Components are loaded into the process by a deployer, which gets its configuration through
an XML file. Communication between processes is transparant to the component, but your
data must be known to Orocos (cfr 'typekits' and 'transports'). Most new users start with a
single process however, using the 'deployer' application.

Figure 2.1. Typical application example for distributed control

A component is a basic unit of functionality which executes one or more (real-time) programs
in a single thread. The program can vary from a mere C/C++ function over a real-time pro-
gram script to a real-time hierarchical state machine. The focus is completely on thread-safe
time determinism. Meaning, that the system is free of priority-inversions, and all operations
are lock-free. Real-time components can communicate with non real-time components (and
vice verse) transparently.

Note

In this manual, the words task and component are used as equal words, meaning
a software component built using the C++ TaskContext class.

Setting up the Component Interface

5

The Orocos Component Model enables :

• Lock free, thread-safe, inter-component communication in a single process.

• Thread-safe, inter-process communication between (distributed) processes.

• Communication between hard Real-Time and non Real-Time components.

• Deterministic execution time during communication for the higher priority thread.

• Synchronous and asynchronous communication between components.

• Interfaces for run-time component introspection.

• C++ class implementations and scripting interface for all the above.

The Scripting chapter gives more details about script syntax for state machines and programs.

2. Hello World !
Important

Before you proceed, make sure you printed the Orocos
Cheat Sheet [http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/
orocos_cheat_sheet.pdf] and RTT Cheat Sheet [http://www.orocos.org/sta-
ble/documentation/rtt/v2.x/doc-xml/rtt_cheat_sheet.pdf] ! They will definately
guide you through this lengthy text.

This section introduces tasks through the "hello world" application, for which you will create
a component package using the orocreate-pkg command on the command line:

$ rosrun ocl orocreate-pkg HelloWorld # ... for ROS users

$ orocreate-pkg HelloWorld # ... for non-ROS users

In a properly configured installation, you'll be able to enter this directory and build your
package right away:

$ cd HelloWorld
$ make

In case you are not using ROS to manage your packages, you also need to install your pack-
age:

$ make install

2.1. Using the Deployer
The way we interact with TaskContexts during development of an Orocos application is
through the deployer . This application consists of the DeploymentComponent which is re-
sponsible for creating applications out of component libraries and the DeploymentCompo-
nent which is a powerful console tool which helps you to explore, execute and debug com-
ponentss in running programs.

http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos_cheat_sheet.pdf
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos_cheat_sheet.pdf
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos_cheat_sheet.pdf
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos_cheat_sheet.pdf
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/rtt_cheat_sheet.pdf
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/rtt_cheat_sheet.pdf
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/rtt_cheat_sheet.pdf

Setting up the Component Interface

6

The TaskBrowser uses the GNU readline library to easily enter commands to the tasks in
your system. This means you can press TAB to complete your commands or press the up
arrow to scroll through previous commands.

You can start the deployer in any directory like this:

 $ deployer-gnulinux

or in a ROS environment:

 $ rosrun ocl deployer-gnulinux

This is going to be your primary tool to explore the Orocos component model so get your
seatbelts fastened!

2.2. Starting your First Application

Now let's start the HelloWorld application we just created with orocreate-pkg.

Create an 'helloworld.ops' Orocos Program Script (ops) file with these contents:

 require("print") // necessary for 'print.ln'
 import("HelloWorld") // 'HelloWorld' is a directory name to import

 print.ln("Script imported HelloWorld package:")
 displayComponentTypes() // Function of the DeploymentComponent

 loadComponent("Hello", "HelloWorld") // Creates a new component of type 'HelloWorld'
 print.ln("Script created Hello Component with period: " + Hello.getPeriod())

and load it into the deployer using this command: $ deployer-gnulinux -s helloworld.ops
-linfo This command imports the HelloWorld package and any component library in there.
Then it creates a component with name "Hello". We call this a dynamic deployment, since
the decision to create components is done at run-time.

You could also create your component in a C++ program. We call this static deployment,
since the components are fixed at compilation time. The figure below illustrates this differ-
ence:

Setting up the Component Interface

7

The 'helloworld' executable is a static deployment of one component in a process, which
means it is hard-coded in the helloworld.cpp file. In contrast, using the deployer application
allows you to load a component library dynamically.

Figure 2.2. Dynamic vs static loading of components

The output of the deployer should be similar to what we show below. Finally, type cd Hello
to start with the exercise.

0.000 [Info][Logger] Real-time memory: 14096 bytes free of 20480 allocated.
0.000 [Info][Logger] No RTT_COMPONENT_PATH set. Using default: .../rtt/install/lib/orocos
0.000 [Info][Logger] plugin 'rtt' not loaded before.

...

0.046 [Info][Logger] Loading Service or Plugin scripting in TaskContext Deployer
0.047 [Info][Logger] Found complete interface of requested service 'scripting'
0.047 [Info][Logger] Running Script helloworld.ops ...
0.050 [Info][DeploymentComponent::import] Importing directory .../HelloWorld/lib/orocos/
gnulinux ...
0.050 [Info][DeploymentComponent::import] Loaded component type 'HelloWorld'
Script imported HelloWorld package:
I can create the following component types:
 HelloWorld
 OCL::ConsoleReporting
 OCL::FileReporting
 OCL::HMIConsoleOutput
 OCL::HelloWorld
 OCL::TcpReporting
 OCL::TimerComponent
 OCL::logging::Appender
 OCL::logging::FileAppender
 OCL::logging::LoggingService
 OCL::logging::OstreamAppender
 TaskContext

Setting up the Component Interface

8

0.052 [Info][Thread] Creating Thread for scheduler: 0
0.052 [Info][Hello] Thread created with scheduler type '0', priority 0, cpu affinity 15 and period 0.
HelloWorld constructed !
0.052 [Info][DeploymentComponent::loadComponent] Adding Hello as new peer: OK.
Script created Hello Component with period: 0
0.053 [Info][Thread] Creating Thread for scheduler: 0
0.053 [Info][TaskBrowser] Thread created with scheduler type '0', priority 0, cpu affinity 15 and
 period 0.
 Switched to : Deployer
0.053 [Info][Logger] Entering Task Deployer

 This console reader allows you to browse and manipulate TaskContexts.
 You can type in an operation, expression, create or change variables.
 (type 'help' for instructions and 'ls' for context info)
 TAB completion and HISTORY is available ('bash' like)

Deployer [S]> cd Hello
 Switched to : Hello
Hello [S]>

The first [Info] lines are printed by the Orocos Logger, which has been configured to display
informative messages to console with the -linfo program option. Normally, only warnings or
worse are displayed by Orocos. You can always watch the log file 'orocos.log' in the same
directory to see all messages. After the [Log Level], the [Origin] of the message is printed,
and finally the message itself. These messages leave a trace of what was going on in the
main() function before the prompt appeared.

Depending on what you type, the TaskBrowser will act differently. The built-in commands
cd, help, quit, ls etc, are seen as commands to the TaskBrowser itself, if you typed something
else, it tries to execute your command according to the Orocos scripting language syntax.

Hello[R] > 1+1
 = 2

2.3. Displaying a TaskContext

A component's interface consists of: Attributes and Properties, Operations, and Data Flow
ports which are all public. The class TaskContext groups all these interfaces and serves as the
basic building block of applications. A component developer 'builds' these interfaces using
the instructions found in this manual.

Setting up the Component Interface

9

Our hello world component.

Figure 2.3. Schematic Overview of the Hello Component.

To display the contents of the current component, type ls, and switch to one of the listed
peers with cd, while cd .. takes you one peer back in history. We have two peers here: the
Deployer and your component, Hello.

Hello [S]> ls

 Listing TaskContext Hello[S] :

 Configuration Properties: (none)

 Provided Interface:
 Attributes : (none)
 Operations : activate cleanup configure error getCpuAffinity getPeriod inFatalError
 inRunTimeError isActive isConfigured isRunning setCpuAffinity setPeriod start stop trigger
 update

 Data Flow Ports: (none)

 Services:
(none)

 Requires Operations : (none)
 Requests Services : (none)

 Peers : (none)
Hello [S]>

Note

To get a quick overview of the commands, type help.

Setting up the Component Interface

10

The first line shows the status between square brackets. The [S] here means that the compo-
nent is in the stopped state. Other states can be 'R' - Running, 'U' - Unconfigured, 'E' - run-
time Error, 'F' - Fatal error, 'X' - C++ eXception in user code.

First you get a list of the Properties and Attributes (alphabetical) of the current component.
Properties are meant for configuration and can be written to disk. Attributes export a C++
class value to the interface, to be usable by scripts or for debugging and are not persistent.

Next, the operations of this component are listed: each component has some universal func-
tions like activate, start, getPeriod etc.

You can see that the component is pretty empty: no data flow ports, services or peers. We
will add some of these right away.

2.4. Listing the Interface
To get an overview of the Task's interface, you can use the help command, for example help
this or help this.activate or just short: help activate

Hello [R]> help this

Printing Interface of 'Hello' :

 activate() : bool
 Activate the Execution Engine of this TaskContext (= events and commands).
 cleanup() : bool
 Reset this TaskContext to the PreOperational state (write properties etc).
...
 Stop the Execution Engine of this TaskContext.

Hello [R]> help getPeriod
 getPeriod() : double
Get the configured execution period. -1.0: no thread associated, 0.0: non periodic, > 0.0: the period.

Hello [R]>

Now we get more details about the operations registered in the public interface. We see now
that the getPeriod operations takes no arguments You can invoke each operation right away.

2.5. Calling an Operation

Hello [R]> getPeriod()
 = 0

Operations are called directly and the TaskBrowser prints the result. The return value of
getPeriod() was a double, which is 0. This works just like calling a 'C' function. You can
express calling explicitly by writing: getPeriod.call().

2.6. Sending a Operation
When an operation is sent to the Hello component, another thread will execute it on behalf
of the sender. Each sent method returns a SendHandle object.

Setting up the Component Interface

11

Hello [R]> getPeriod.send()
 = (unknown_t)

The returned SendHandle must be stored in a SendHandle attribute to be useful:

Hello [R]> var SendHandle sh
Hello [R]> sh = getPeriod.send()
 = true
Hello [R]> sh.collectIfDone(ret)
 = SendSuccess
Hello [R]> ret
 = 0

SendHandles are further explained down the document. They are not required understanding
for a first discovery of the Orocos world.

2.7. Changing Values
Besides calling or sending component methods, you can alter the attributes of any task, pro-
gram or state machine. The TaskBrowser will confirm validity of the assignment with the
contents of the variable. Since Hello doesn't have any attributes, we create one dynamically:

Hello [R]> var string the_attribute = "HelloWorld"
Hello [R]> the_attribute
 = Hello World
Hello [R]> the_attribute = "Veni Vidi Vici !"
 = "Veni Vidi Vici !"
Hello [R]> the_attribute
 = Veni Vidi Vici !

2.8. Reading and Writing Ports
The Data Ports allow seamless communication of calculation or measurement results between
components. Adding and using ports is described in Section 3.3, “Data Flow Ports”.

2.9. Last Words
Last but not least, hitting TAB twice, will show you a list of possible completions, such as
peers, services or methods.

TAB completion works even across peers, such that you can type a TAB completed command
to another peer than the current peer.

In order to quit the TaskBrowser, enter quit:

 Hello [R]> quit

1575.720 [Info][ExecutionEngine::setActivity] Hello is disconnected from its activity.
1575.741 [Info][Logger] Orocos Logging Deactivated.

Setting up the Component Interface

12

The TaskBrowser Component is application independent, so that your end user-application
might need a more suitable interface. However, for testing and inspecting what is happening
inside your real-time programs, it is a very useful tool. The next sections show how you can
add properties, methods etc to a TaskContext.

Note

If you want a more in-depth tutorial, see the rtt-exercises package which covers
each aspect also shown in this manual.

3. Creating a Basic Component
Components are implemented by subclassing the TaskContext class. It is useful speaking of a
context because it defines the context in which an activity (a program) operates. It defines the
interface of the component, its properties, its peer components and uses its ExecutionEngine
to execute its programs and to process asynchronous messages.

This section walks you through the definition of an example component in order to show you
how you could build your own component.

A new component is constructed as :

 #include <rtt/TaskContext.hpp>
 #include <rtt/Component.hpp>

 // we assume this is done in all the following code listings :
 using namespace RTT;

 class MyTask : public TaskContext
 {
 public:
 ATask(const std::string& name) : public TaskContext(name) {}
 };

 // from Component.hpp:
 OCL_CREATE_COMPONENT(MyTask);

The constructor argument is the (unique) name of the component. You should create the
component template and the CMakeLists.txt file using the orocreate-pkg program such that
this compiles right away as in the HelloWorld example above:

 $ orocreate-pkg mytask

You can load this package in a deployer by using the import command at the TaskBrows-
er prompt and verify that it contains components using displayComponentTypes() in the
TaskBrowser. After import, loadComponent("the_task","MyTask") loads a new compo-
nent instance into the process:

Setting up the Component Interface

13

 $ deployer-gnulinux
 ...
 Deployer [S]> import("mytask") // 'mytask' is a directory name to import
 Deployer [S]> displayComponentTypes() // lists 'MyTask' among others
 ...
 MyTask
 ...
 Deployer [S]> loadComponent("the_task", "MyTask") // Creates a new component of type
 'MyTask'

The component offers services through operations, and requests them through operation
callers. The Data Flow is the propagation of data from one task to another, where one pro-
ducer can have multiple consumers and the other way around.

Figure 2.4. Schematic Overview of a TaskContext

The beating hart of the component is its Execution Engine will check for new messages in it's
queue and execute programs which are running in the task. When a TaskContext is created,
the ExecutionEngine is always running. The complete state flow of a TaskContext is shown
in Figure 2.5, “ TaskContext State Diagram ”. You can add code in the TaskContext by
implementing *Hook() functions, which will be called by the ExecutionEngine when it is in
a certain state or transitioning between states.

Setting up the Component Interface

14

During creation, a component is in the Init state. When constructed, it enters the PreOper-
ational or Stopped (default) state. If it enters the PreOperational state after construction, it
requires an additional configure() call before it can be start()'ed. The figure shows that for
each API function, a user 'hook' is available.

Figure 2.5. TaskContext State Diagram

The first section goes into detail on how to use these hooks.

3.1. Task Application Code
The user application code is filled in by inheriting from the TaskContext and implementing
the 'Hook' functions. There are five such functions which are called when a TaskContext's
state changes.

The user may insert his configuration-time setup/cleanup code in the configureHook() (read
XML, print status messages etc.) and cleanupHook() (write XML, free resources etc.).

The run-time (or: real-time) application code belongs in the startHook(), updateHook() and
stopHook() functions.

class MyTask
 : public TaskContext
 {
 public:
 MyTask(std::string name)
 : TaskContext(name)
 {
 // see later on what to put here.
 }

Setting up the Component Interface

15

 /**
 * This function is for the configuration code.
 * Return false to abort configuration.
 */
 bool configureHook() {
 // ...
 return true;
 }

 /**
 * This function is for the application's start up code.
 * Return false to abort start up.
 */
 bool startHook() {
 // ...
 return true;
 }

 /**
 * This function is called by the Execution Engine.
 */
 void updateHook() {
 // Your component's algorithm/code goes in here.
 }

 /**
 * This function is called when the task is stopped.
 */
 void stopHook() {
 // Your stop code after last updateHook()
 }

 /**
 * This function is called when the task is being deconfigured.
 */
 void cleanupHook() {
 // Your configuration cleanup code
 }
 };

Important

By default, the TaskContext enters the Stopped state (Figure 2.5, “ TaskContext
State Diagram ”) when it is created, which makes configure() an optional call.

If you want to force the user to call configure() of your TaskContext, set the TaskState in
your constructor as such:

class MyTask
 : public TaskContext
 {
 public:
 MyTask(std::string name)
 : TaskContext(name, PreOperational) // demand configure() call.
 {
 //...
 }

Setting up the Component Interface

16

 };

When configure() is called, the configureHook() (which you must implement!) is executed
and must return false if it failed. The TaskContext drops to the PreOperational state in that
case. When configureHook() succeeds, the TaskContext enters the Stopped state and is ready
to run.

A TaskContext in the Stopped state (Figure 2.5, “ TaskContext State Diagram ”) may be
start()'ed upon which startHook() is called once and may abort the start up sequence by re-
turning false. If true, it enters the Running state and updateHook() is called (a)periodically
by the ExecutionEngine, see below. When the task is stop()'ed, stopHook() is called after
the last updateHook() and the TaskContext enters the Stopped state again. Finally, by calling
cleanup(), the cleanupHook() is called and the TaskContext enters the PreOperational state.

3.2. Starting a Component
The functionality of a component, i.e. its algorithm, is executed by its internal Execution En-
gine. To run a TaskContext, you need to use one of the base::ActivityInterface classes from
the RTT, most likely Activity. This relation is shown in Figure 2.6, “ Executing a TaskCon-
text ”. The Activity class allocates a thread which executes the Execution Engine. The cho-
sen Activity object will run the Execution Engine, which will in turn call the application's
hooks above. When created, the TaskContext is assigned the Activity by default. It offers
an internal thread which can receive messagse and process events but is not periodicly exe-
cuting updateHook().

You can make a TaskContext 'active' by creating an Activity object which executes its Ex-
ecution Engine.

Figure 2.6. Executing a TaskContext

3.2.1. Periodic Execution

A common task in control is executing an algorithm periodically. This is done by attaching
an activity to the Execution Engine which has a periodic execution time set.

 #include <rtt/Activity.hpp>

Setting up the Component Interface

17

 using namespace RTT;

 TaskContext* a_task = new MyTask("the_task");
 // Set a periodic activity with priority=5, period=1000Hz
 a_task->setActivity(new Activity(5, 0.001));
 // ... start the component:
 a_task->start();
 // ...
 a_task->stop();

Which will run the Execution Engine of "ATask" with a frequency of 1kHz. This is the
frequency at which state machines are evaluated, program steps taken, methods and messages
are accepted and executed and the application code in updateHook() is run. Normally this
activity is always running, but you can stop and start it too.

You don't need to create a new Activity if you want to switch to periodic execution, you can
also use the setPeriod function:

 // In your TaskContext's configureHook():
 bool configureHook() {
 return this->setPeriod(0.001); // set to 1000Hz execution mode.
 }

An updateHook() function of a periodic task could look like:

 class MyTask
 : public TaskContext
 {
 public:
 // ...

 /**
 * This function is periodically called.
 */
 void updateHook() {
 // Your algorithm for periodic execution goes inhere
 double result;
 if (inPort.read(result) == NewData)
 outPort.write(result * 2.0); // only write if new data arrived.
 }

 };

You can find more detailed information in Section 2, “Activities” in the CoreLib reference.

3.2.2. Default Component Execution Semantics

A TaskContext is run by default by a non periodic RTT:Activity object. This is useful when
updateHook() only needs to process data when it arrives on a port or must wait on network
connections or does any other blocking operation.

Upon start(), the Execution Engine waits for new methods or data to come in to be executed.
Each time such an event happens, the user's application code (updateHook()) is called after
the Execution Engine did its work.

An updateHook() function of a non periodic task could look like:

 class MyTask
 : public TaskContext

Setting up the Component Interface

18

 {
 public:
 // ...

 /**
 * This function is only called by the Execution Engine
 * when 'trigger()' is called or an event or command arrives.
 */
 void updateHook() {
 // Your blocking algorithm goes inhere
 char* data;
 double timeout = 0.02; // 20ms
 int rv = my_socket_read(data, timeout);

 if (rv == 0) {
 // process data
 this->stateUpdate(data);
 }

 // This is special for non periodic activities, it makes
 // the TaskContext call updateHook() again after
 // commands and events are processed.
 this->getActivity()->trigger();
 }

 };

Warning

Non periodic activities should be used with care and with much thought in com-
bination with scripts (see later). The ExecutionEngine will do absolutely nothing
if no asynchronous methods or asynchronous events or no trigger comes in. This
may lead to surprising 'bugs' when program scripts or state machine scripts are
executed, as they will only progress upon these events and seem to be stalled
otherwise.

You can find more detailed information in Section 2, “Activities” in the CoreLib reference.

3.3. Data Flow Ports
Purpose

A component has ports in order to send or receive a stream of data. The algorithm
writes Output ports to publish data to other components, while input ports allow
an algorithm to receive data from other components. A component can be woken
up if data arrives at one or more input ports or it can 'poll' for new data on its
input ports.

Reading and writing data ports is always real-time and thread-safe, on the con-
dition that copying your data (i.e. your operator=) is as well.

Each component defines its data exchange ports and connections transmit data from one port
to another. A Port is defined by a name, unique within that component, the data type it wants
to exchange and if its for reading (Input) or writing (Output) data samples. Finally, you can
opt that new data on selected Input ports wake up your task. The example below shows all
these possibilities.

Setting up the Component Interface

19

Each connection between an Output port and an Input port can be tuned for your setup:
buffering of data, thread-safety and initialisation of the connection are parameters provided
by the user when the connection is created. We call these Connection Policies and use the
ConnPolicy object when creating the connection between ports.

This figure shows that input and output ports can be connected in an N:M way. See Sec-
tion 4.2, “Setting up the Data Flow” on how to connect ports and which connection policy
to choose.

Figure 2.7. Data flow ports are connected with a connection policy

3.3.1. Which data can be transfered ?

The data flow implementation can pass on any data type 'X', given that its class provides:

• A default constructor: X::X()

• An assignment operator: const X& X::operator=(const X&)

For real-time data transfer (see also Section 3.3.3, “Guaranteeing Real-Time data flow”) the
operator= must be real-time when assigning equal sized objects. When assigning not equal
sized objects, your operator= should free the memory and allocate enough room for the new
size.

In addition, if you want to send your data out of your process to another process or host, it
will additionally need:

• Registration of 'X' with the type system (see the manual about Typekits)

• A transport for the data type registered with the type system (see the transport
(ROS,CORBA,MQueue,...) documentation)

The standard C++ and std::vector<double> data types are already included in the RTT library
for real-time transfer and out of process transport.

3.3.2. Setting up the Data Flow Interface

Any kind of data can be exchanged (also user defined C/C++ types) but for readability, only
the 'double' C type is used here.

Setting up the Component Interface

20

 #include <rtt/Port.hpp>
 using namespace RTT;

 class MyTask
 : public TaskContext
 {
 // Input port: We'll let this one wake up our thread
 InputPort<double> evPort;

 // Input port: We will poll this one
 InputPort<double> inPort;

 // Output ports are allways 'send and forget'
 OutputPort<double> outPort;
 public:
 // ...
 MyTask(std::string name)
 : TaskContext(name)
 {
 // an 'EventPort' is an InputPort which wakes our task up when data arrives.
 this->ports()->addEventPort("evPort", evPort).doc("Input Port that raises an event.");

 // These ports do not wake up our task
 this->ports()->addPort("inPort", inPort).doc("Input Port that does *not* raise an event.");
 this->ports()->addPort("outPort", outPort).doc("Output Port, here write our data to.");

 // more additions to follow, see below
 }

 // ...
 };

The example starts with declaring all the ports of MyTask. A template parameter '<double>'
specifies the type of data the task wants to exchange through that port. Logically, if input and
output are to be connected, they must agree on this type. The name is given in the addPort()
function. This name can be used to 'match' ports between connected tasks (using 'connect-
Ports', see Section 4, “Connecting Services”), but it is possible and preferred to connect
Ports with different names using the Orocos deployer.

There are two ways to add a port to the TaskContext interface: using addPort() or addEvent-
Port(). In the latter case, new data arriving on the port will wake up ('trigger') the activity of
our TaskContext and updateHook() get's executed.

Note

Only InputPort can be added as EventPort and will cause your component to be
triggered (ie wake up and call updateHook).

3.3.3. Guaranteeing Real-Time data flow

The data flow implementation is written towards hard real-time data transfer, if the data type
allows it. Simple data types, like a double or struct with only data which can be copied without
causing memory allocations work out of the box. No special measures must be taken and the
port is immediately ready to use.

If however, your type is more complex, like a std::vector or other dynamically sized object,
additional setup steps must be done. First, the type must guarantee that its operator=() is

Setting up the Component Interface

21

real-time in case two equal-sized objects are used. Second, before sending the first data to
the port, a properly sized data sample must be given to the output port. An example:

 OutputPort<std::vector<double> > myport("name");

 // create an example data sample of size 10:
 std::vector<double> example(10, 0.0);

 // show it to the port (this is a not real-time operation):
 myport.setDataSample(example);

 // Now we are fine ! All items sent into the port of size 10 or less will
 // be passed on in hard real-time.
 myport.write(example); // hard real-time.

setDataSample does not actually send the data to all receivers, it just uses this sample to
initiate the connection, such that any subsequent writes to the port with a similar sample will
be hard real-time. If you omit this call, data transfer will proceed, but the RTT makes no
guarantees about real-timeness of the transfer.

The same procedure holds if you use transports to send data to other processes or hosts.
However, it will be the transport protocol that determines if the transfer is real-time or not.
For example, CORBA transports are not hard real-time, while MQueue transports are.

3.3.4. Using the Data Flow Interface in C++

The Data Flow interface is used by your task from within the program scripts or its update-
Hook() method. Logically the script or method reads the inbound data, calculates something
and writes the outbound data.

 #include <rtt/Port.hpp>
 using namespace RTT;

 class MyTask
 : public TaskContext
 {
 // ...Constructor sets up Ports, see above.

 bool startHook() {
 // Check validity of (all) Ports:
 if (!inPort.connected()) {
 // No connection was made, can't do my job !
 return false;
 }
 if (!outPort.connected()) {
 // ... not necessarily an error, a connection may be
 // made while we are running.
 }
 return true;
 }

 /**
 * Note: use updateHook(const std::vector<PortInterface*>&)
 * instead for having information about the updated event
 * driven ports.
 */
 void updateHook() {

Setting up the Component Interface

22

 double val = 0.0;

 // Possible return values are: NoData, OldData and NewData.
 if (inPort.read(val) == RTT::NewData) {
 // update val...
 outPort.write(val);
 }
 }
 // ...
 };

It is wise to check in the startHook() (or earlier: in configureHook()) function if all necessary
ports are connected(). At this point, the task start up can still be aborted by returning false.
Otherwise, a write to an unconnected output port will be discarded, while a read from an
unconnected input port returns NoData.

3.3.5. Using Data Flow in Scripts

When a Port is added, it becomes available to the Orocos scripting system such that (part of)
the calculation can happen in a script. Also, the TaskBrowser can then be used to inspect the
contents of the DataFlow on-line.

Note

In scripting, it is currently not yet possible to know which event port woke your
task up.

A small program script could be loaded into MyTask with the following contents:

 program MyControlProgram {
 var double the_K = K // read task property, see later.
 var double setp_d

 while (true) {
 if (SetPoint_X.read(setp_d) != NoData) { // read Input Port
 var double in_d = 0.0;
 Data_R.read(in_d) // read Input Port
 var double out_d = (setp_d - in_d) * the_K // Calculate
 Data_W.write(out_d) // write Data Port
 }
 yield // this is a 'yield' point to avoid inifinite spinning.
 }
 }

The program "MyControlProgram" starts with declaring two variables and reading the task's
Property 'K'. Then it goes into an endless loop, trying to Pop a set point value from the
"SetPoint_X" Port. If that succeeds (new or old data present) the "Data_R" Port is read and a
simple calculation is done. The result is written to the "Data_W" OutputPort and can now be
read by the other end(s). Alternatively, the result may be directly used by the Task in order
to write it to a device or any non-task object. You can use methods (below) to send data from
scripts back to the C++ implementation.

Remark that the program is executed within the thread of the component. In order to avoid
the endless loop, a 'wait' point must be present. The "yield" command inserts such a wait
point and is part of the Scripting syntax. If you plan to use Scripting state machines, such
a while(true) loop (and hence wait point) is not necessary. See the Scripting Manual for a
full overview of the syntax.

Setting up the Component Interface

23

3.4. The OperationCaller/Operation Interface
Purpose

A task's operations define which functions a component offers. Operations are
grouped in 'services', much like C++ class methods are grouped in classes. Op-
erationCallers are helper objects for calling operations.

Operations are C/C++ functions that can be used in scripting or can be called from another
process or accross a network. They take arguments and return a value. The return value can
in return be used as an argument for other Operations or stored in a variable.

To add a C/C++ function to the operation interface, you only need to register it with addOp-
eration(), defined in Service.

 #include <rtt/Operation.hpp>
 using namespace RTT;

 class MyTask
 : public TaskContext
 {
 public:
 void reset() { ... }
 string getName() const { ... }
 double changeParameter(double f) { ... }
 // ...

 MyTask(std::string name)
 : TaskContext(name),
 {
 // Add the method objects to the method interface:
 this->addOperation("reset", &MyTask::reset, this, OwnThread)
 .doc("Reset the system.");
 this->addOperation("getName", &MyTask::getName, this, ClientThread)
 .doc("Read out the name of the system.");
 this->addOperation("changeParameter", &MyTask::changeParameter, this, OwnThread)
 .doc("Change a parameter, return the old value.")
 .arg("New Value", "The new value for the parameter.");

 // more additions to follow, see below
 }
 // ...
 };

In the above example, we wish to add 3 functions to the method interface: reset, getName
and changeParameter. You need to pass the name of the function, address (function pointer)
of this function and the object on which it must be called (this) to addOperation. Optionally,
you may document the operation with .doc("...") and each argument with a .arg() call.

Using this mechanism, any method of any class can be added to a task's method interface, not
just functions of a TaskContext You can also add plain C functions, just omit the this pointer.

As the last argument to addOperation, a flag can be passed which can be OwnThread or
ClientThread. This allows the component implementer to choose if the operation, when
called, is executed in the thread of the ExecutionEngine, or in the thread of the caller (i.e. the
Client). This choice is hidden from the user of our operations. It allows us to choose who gets

Setting up the Component Interface

24

the burden of the execution of the function, but also allows to synchronize operation calls
with the execution of updateHook(). Summarized in a table:

Table 2.1. Execution Types

ExecutionType Requires locks in
your component?

Executed at priority
of

Examples

ClientThread Yes. For any da-
ta shared be-
tween the Client-
Thread-tagged oper-
ation and update-
Hook() or other oper-
ations.

Caller thread • Stateless algo-
rithms that get all
data through para-
meters.

• Operations of re-
al-time compo-
nents that are not
real-time.

• getName(),
loadProperties("file.xml"), ...

OwnThread No. Every Own-
Thread-tagged oper-
ation and update-
Hook() is executed in
the thread of the com-
ponent.

Component thread. • Operations that do
a lot of setup work
in the component.

• Operations which
are called from sev-
eral places at the
same time.

• moveToPosition(pos,
time),
setParameter("name",
value),...

The choice of this type is completely up to the implementor of the component and can be
made independently of how it will be used by its clients. Clients can indicate the same choice
indepenently: they can Call or Send an operation. This is explained in the next two sections.

3.4.1. Call versus Send: the OperationCaller object

Operations are added to the TaskContext's inteface. To call an operation from another com-
ponent, you need a OperationCaller object to do the work for you. It allows to modes:

• calling the operation, in which case you block until the operation returns its value

• sending the operation, in which case you get a SendHandle back which allows you to
follow its status and collect the results.

One OperationCaller object always offers both choices, and they can be used both inter-
weaved, as far as the allocation scheme allows it. See Section 3.4.4, “Executing methods in
real-time.”. Calling is used by default if you don't specify which mode you want to use.

Each OperationCaller object is templated with the function signature of the operation you
wish to call. For example

void(int,double)

Setting up the Component Interface

25

which is the signature of a function returning 'void' and having two arguments: an 'int' and
a 'double', for example, void foo(int i, double d);.

To setup a OperationCaller object, you need a pointer to a TaskContext object, for example
using the 'getPeer()' class function. Then you provide the name with which the operation was
registered during 'addOperation':

 // create a method:
 TaskContext* a_task_ptr = getPeer("ATask");
 OperationCaller<void(void)> my_reset_meth
 = a_task_ptr->getOperation("reset"); // void reset(void)

 // Call 'reset' of a_task:
 reset_meth();

If you wanted to send the same reset operation, you had written:

 // Send 'reset' of a_task:
 SendHandle<void(void)> handle = reset_meth.send();

A send() always returns a SendHandle object which offers three methods: collect(), collec-
tIfDone() and ret(). All three come in two forms: with arguments or without arguments. The
form without arguments can be used if you are only interested in the return values of these
functions. collect() and collectIfDone() return a SendStatus, ret() returns the return value of
the operation. SendStatus is an enum of SendSuccess, SendNotReady or SendFailure. Code
says it all:

 // Send 'reset' of a_task:
 SendHandle<void(void)> handle = reset_meth.send();

 // polling for reset() to complete:
 while (handle.collectIfDone() == SendNotReady)
 sleep(1);

 // blocking for reset() to complete:
 handle = reset_meth.send();
 SendStatus ss = handle.collect();
 if (ss != SendSuccess) {
 cout << "Execution of reset failed." << endl;
 }

 // retrieving the return value is not possible for a void(void) method.

Next we move on to methods with arguments and return values by using the getName and
changeParameter operations:

 // used to hold the return value of getName:
 string name;
 OperationCaller<string(void)> name_meth =
 a_task_ptr->getOperation("getName"); // string getName(void)

 // Call 'getName' of a_task:
 name = name_meth();
 // Equivalent to:
 name = name_meth.call();

 cout << "Name was: " << name << endl;

 // Send 'getName' to a_task:
 SendHandle<string(void)> nhandle = name.send();

Setting up the Component Interface

26

 // collect takes the return value of getName() as first argument and fills it in:
 SendStatus ss = nhandle.collect(name);
 if (ss == SendSuccess) {
 cout << "Name was: " << name << endl;
 }

 assert(name == nhandle.ret()); // ret() returns the same as getName() returned.

 // hold return value of changeParameter:
 double oldvalue;
 OperationCaller<double(double)> mychange =
 a_task_ptr->getOperation("changeParameter"); // double changeParameter(double)

 // Call 'changeParameter' of a_task with argument '1.0'
 oldvalue = mychange(1.0);
 // Equivalent to:
 oldvalue = mychange.call(1.0);

 // Send 'changeParameter' to a_task:
 SendHandle<double(double)> chandle = changeParameter.send(2.0)

 SendStatus ss = chandle.collectIfDone(oldvalue);
 if (ss == SendSuccess) {
 cout << "Oldvalue was: " << oldvalue << endl;
 }

Up to 4 arguments can be given to send or call. If the signature of the OperationCaller was
not correct, the method invocation will be throw. One can check validity of a method object
with the 'ready()' function:

 OperationCaller<double(double)> mychange = ...;
 assert(mychange.ready());

3.4.2. Calling/Sending Operations in Scripts

The syntax in scripts is the same as in C++:

 // call:
 var double oldvalue
 ATask.changeParameter(0.1)
 // or :
 set oldvalue = ATask.changeParameter(0.1) // store return value

 // send:
 var SendHandle handle;
 var SendStatus ss;
 handle = ATask.changeParameter.send(2.0);

 // collect non-blocking:
 while (handle.collectIfDone(oldvalue))
 yield // see text below.

 // collect blocking:
 handle.collect(oldvalue); // see text below.

There is an important difference between collect() and collectIfDone() in scripts. collect()
will block your whole script, so also other scripts executed in the ExecutionEngine and up-

Setting up the Component Interface

27

dateHook(). The only exception is that incomming operations are still processed, such that
call-backs are allowed. For example: if ATask.changeParameter(0.1) does in turn a send on
your component, this will be processed such that no dead-lock occurs.

If you do not wish to block unconditionally on the completion of changeParameter(), you
can poll with collectIfDone(). Each time the poll fails, you issue a yield (in RTT 1.x this
was 'do nothing'). Yield causes temporary suspension of your script, such that other scripts
and updateHook() get a chance to run. In the next trigger of your component, the program
resumes and the while loop checks the collectIfDone() statement again.

3.4.3. Overview: Who's executing the operation ?

Considering all the combinations above, 4 cases can occur:

Table 2.2. Call/Send and ClientThread/OwnThread Combinations

OperationCaller-v \ Opera-
tion->

ClientThread OwnThread

Call Executed directly by the
thread that does the call()

Executed by the Executio-
nEngine of the receiving
component.

Send Executed by the GlobalExe-
cutionEngine. See text below.

Executed by the Executio-
nEngine of the receiving
component.

This matrix shows a special case: when the client does a send() and the component defined
the operation as 'ClientThread', someone else needs to execute it. That's the job of the Glob-
alExecutionEngine. Since no thread wishes to carry the burden of executing this function, the
GlobalExecutionEngine, which runs with the lowest priority thread in the system, picks it up.

3.4.4. Executing methods in real-time.

Calling or sending a method has a cost in terms of memory. The implementations needs to
allocate memory to collect the return values when a send or call is done. There are two ways
to claim memory: by using a real-time memory allocator or by setting a fixed amount in the
OperationCaller object in advance. The default is using the real-time memory allocator. For
mission critical code, you can override this with a reserved amount, which will be guaranteed
always available for that object.

(to be completed).

3.4.5. Operation Argument and Return Types

The arguments can be of any class type and type qualifier (const, &, *,...). However, to be
compatible with inter-process communication or the Orocos Scripting variables, it is best to
follow the following guidelines :

Table 2.3. Operation Return & Argument Types

C++ Type In C++ functions passed by Maps to Parser variable
type

Primitive C types : double,
int, bool, char

value or reference double, int, bool, char

Setting up the Component Interface

28

C++ Type In C++ functions passed by Maps to Parser variable
type

C++ Container types :
std::string,
std::vector<double>

(const) & string, array

Orocos Fixed Container
types : RTT::Double6D,
KDL::[Frame | Rotation |
Twist | ...]

(const) & double6d, frame, rotation,
twist, ...

Summarised, every non-class argument is best passed by value, and every class type is best
passed by const reference. The parser does handle references (&) in the arguments or return
type as well.

3.5. The Attributes and Properties Interface

Purpose

A task's properties are intended to configure and tune a task with certain values.
Properties have the advantage of being writable to an XML format, hence can
store 'persistent' state. For example, a control parameter. Attributes reflect a C+
+ class variable in the interface and can be read and written during run-time by
a program script, having the same data as if it was a C++ function.

Reading and writing properties and attributes is real-time but not thread-safe and
should for a running component be limited to the task's own activity.

A TaskContext may have any number of attributes or properties, of any type. They can be
used by programs in the TaskContext to get (and set) configuration data. The task allows to
store any C++ value type and also knows how to handle Property objects. Attributes are plain
variables, while properties can be written to and updated from an XML file.

3.5.1. Adding Task Attributes or Properties

An attribute can be added in the comonent's interface (ConfigurationInterface) like this :

 #include <rtt/Property.hpp>
 #include <rtt/Attribute.hpp>

 class MyTask
 : public TaskContext
 {
 // we will expose these:
 bool aflag;
 int max;

 double pi;

 std::string param;
 double value;
 public:
 // ...
 MyTask(std::string name)
 : TaskContext(name),

Setting up the Component Interface

29

 param("The String"),
 value(1.23),
 aflag(false), max(5), pi(3.14)
 {
 // other code here...

 // attributes and constants don't take a .doc() description.
 this->addAttribute("aflag", aflag);
 this->addAttribute("max", max);

 this->addConstant("pi", pi);

 this->addProperty("Param", param).doc("Param Description");
 this->addProperty("Palue", value).doc("Value Description");
 }
 // ...
 };

Which aliases an attribute of type bool and int, name 'aflag' and 'max' and initial value of
false and 5 to the task's interface. A constant alias 'pi' is added as well. These methods return
false if an attribute with that name already exists. Adding a Property is also straightforward.
The property is added in a PropertyBag.

3.5.2. Accessing Task Attributes or Properties in C++

An attribute is used in your C++ code transparantly. For properties, you need their set() and
get() methods to write and read them.

A external task can access attributes through an Attribute object and the getValue method:

 Attribute<bool> the_flag = a_task->getValue("aflag");
 assert(the_flag.ready());

 bool result = the_flag.get();
 assert(result == false);

 Attribute<int> the_max = a_task->attributes()->getAttribute("max");
 assert(the_max.ready());
 the_max.set(10);
 assert(the_max.get() == 10);

The attributes 'the_flag' and 'the_max' are mirrors of the original attributes of the task.

See also Section 6, “Properties” in the Orocos CoreLib reference.

3.5.3. Accessing Task Attributes in Scripts

A program script can access the above attributes simply by naming them:

 // a program in "ATask" does :
 var double pi2 = pi * 2.
 var int myMax = 3
 set max = myMax

 set Param = "B Value"

 // an external (peer task) program does :
 var double pi2 = ATask.pi * 2.
 var int myMax = 3
 set ATask.max = myMax

Setting up the Component Interface

30

When trying to assign a value to a constant, the script parser will throw an exception, thus
before the program is run.

Important

The same restrictions of Section 3.4.5, “Operation Argument and Return Types”
hold for the attribute types, when you want to access them from program scripts.

See also Section 5, “Attributes” in the Orocos CoreLib reference.

3.5.4. Reading and writing Task Properties from XML

See Section 6.1, “Task Property Configuration and XML format” for storing and loading the
Properties to and from files, in order to store a TaskContext's state.

3.6. A TaskContext's Error states
In addition to the PreOperational, Stopped and Running TaskContext states, you can use two
additional states for more advanced component behaviour: the Exception, FatalError and the
RunTimeError states. The first two are shown in Figure 2.8, “ Extended TaskContext State
Diagram ”.

This figure shows the extended state diagram of a TaskContext. This is Figure 2.5, “
TaskContext State Diagram ” extended with two more states: Exception and FatalError.

Figure 2.8. Extended TaskContext State Diagram

The FatalError state is entered whenever the TaskContext's fatal() function is called, and
indicates that an unrecoverable error occured. The ExecutionEngine is immediately stopped
and no more functions are called. This state can not be left and the only next step is destruction
of the component (hence 'Fatal').

When an exception happens in your code, the Exception state is entered. Depending on the
TaskState, stopHook() and cleanupHook() will be called to give a chance to cleanup. This
state is recoverable with the recover() function which drops your component back to the
PreOperational state, from which it needs to be configured again.

It is possible that non-fatal run-time errors occur which may require user action on one hand,
but do not prevent the component from performing it's task, or allow degraded performance.
Therefor, in the Running state, one can make a transition to theRunTimeError sub-state by
calling error(). See Figure 2.9, “ Possible Run-Time failure. ”.

Setting up the Component Interface

31

Th

Figure 2.9. Possible Run-Time failure.

When the application code calls error(), the RunTimeError state is entered and errorHook()
is executed instead of updateHook(). If at some moment the component detects that it can
resume normal operation, it calls the recover() function, which leads to the Running state
again and in the next iteration, updateHook() is called again.

3.6.1. Error States Example

Here is a very simple use case, a TaskContext communicates over a socket with a remote
device. Normally, we get a data packet every 10ms, but sometimes one may be missing.
When we don't receive 5 packets in a row, we signal this as a run time error. From the moment
packets come in again we go back to the run state. Now if the data we get is corrupt, we
go into fatal error mode, as we have no idea what the current state of the remote device
is, and shouldn't be updating our state, as no one can rely on the correct functioning of the
TaskContext.

Here's the pseudo code:

 class MyComponent : public TaskContext
 {
 int faults;
 public:
 MyComponent(const std::string &name)
 : TaskContext(name), faults(0)
 {}

 protected:
 // Read data from a buffer.
 // If ok, process data. When to many faults occur,
 // trigger a runtime error.
 void updateHook()
 {
 Data_t data;

Setting up the Component Interface

32

 FlowStatus rv = input.read(data);
 if (rv == NewData) {
 this->stateUpdate(data);
 faults = 0;
 this->recover(); // may be an external supervisor calls this instead.
 } else {
 faults++;
 if (faults > 4)
 this->error();
 }

 }

 // Called instead of updateHook() when in runtime error state.
 void errorHook()
 {
 this->updateHook(); // just call updateHook anyway.
 }

 // Called by updateHook()
 void stateUpdate(Data_t data)
 {
 // Check for corrupt data
 if (checkData(data) == -1) {
 this->fatalError(); // we will enter the FatalError state.
 } else {
 // data is ok: update internal state...
 }
 }
 };

When you want to discard the 'error' state of the component, call mycomp.recover(). If your
component went into FatalError, call mycomp.reset() and mycomp.start() again for process-
ing updateHook() again.

4. Connecting Services
A Real-Time system exists of multiple concurrent tasks which must communicate to each
other. TaskContext can be connected to each other such that they can use each other's Ser-
vices.

4.1. Connecting Peer Components

Note

The addPeer and connectPeers functions are used to connect TaskContexts and
allow them to use each other's interface. The connectPorts function sets up the
data flow between tasks.

We call connected TaskContexts "Peers" because there is no implied hierarchy. A connection
from one TaskContext to its Peer can be uni- or bi-directional. In a uni-directional connection
(addPeer), only one peer can use the services of the other, while in a bi-directional connection
(connectPeers), both can use each others services. This allows to build strictly hierarchical
topological networks as well as complete flat or circular networks or any kind of mixed
network.

Setting up the Component Interface

33

Peers are connected as such (hasPeer takes a string argument):

 // bi-directional :
 connectPeers(&a_task, &b_task);
 assert(a_task.hasPeer(&b_task.getName())
 & b_task.hasPeer(&a_task.getName()));

 // uni-directional :
 a_task.addPeer(&c_task);
 assert(a_task.hasPeer(&c_task.getName())
 & ! c_task.hasPeer(&a_task.getName()));

 // Access the interface of a Peer:
 OperationCaller<bool(void)> m = a_task.getPeer("CTask")->getOperation("aOperationCaller");
 // etc. See interface usage in previous sections.

Both connectPeers and addPeer allow scripts or C++ code to use the interface of a connected
Peer. connectPeers does this connection in both directions.

From within a program script, peers can be accessed by merely prefixing their name to the
member you want to access. A program within "ATask" could access its peers as such :

 // Script:
 var bool result = CTask.aOperation()

The peer connection graph can be traversed at arbitrary depth. Thus you can access your
peer's peers.

4.2. Setting up the Data Flow

Note

In typical applications, the DeploymentComponent ('deployer') will form con-
nections between ports using a program script or XML file. The manual method
described below is not needed in that case.

Data Flow between TaskContexts can be setup by using connectPorts. The direction of the da-
ta flow is imposed by the input/output direction of the ports. The connectPorts(TaskContext*
A, TaskContext* B) function creates a connection between TaskContext ports when both
ports have the same name and type. It will never disconnect existing connections and only
tries to add ports to existing connections or create new connections. The disadvantage of this
approach is that you can not specify connection policies.

Instead of calling connectPorts, one may connect individual ports, such that different named
ports can be connected and a connection policy can be set. Suppose that Task A has a port
a_port, Task B a b_port and Task C a c_port (all are of type PortInterface&). Then connec-
tions are made as follows:

 // Create a connection with a buffer of size 10:
 ConnPolicy policy = RTT::ConnPolicy::buffer(10);
 a_port.connectTo(&b_port, policy);
 // Create an unbuffered 'shared data' connection:
 policy = RTT::ConnPolicy::data();
 a_port.connectTo(&c_port, policy);

The order of connections does not matter; the following would also work:

Setting up the Component Interface

34

 b_port.connectTo(&a_port, policy); // ok...
 c_port.connectTo(&a_port, policy); // fine too.

Note that you can not see from this example which port is input and which is output. For
readability, it is recommended to write it as:

output_port.connectTo(&input_port);

ConnPolicy are powerful objects that allow you to connect component ports just like you
want them. You can use them to create connections over networks or to setup fast real-time
inter-process communication.

4.3. Disconnecting Tasks
Tasks can be disconnected from a network by invoking disconnect() on that task. It will
inform all its peers that it has left the network and disconnect all its ports.

5. Providing and Requiring Services
In the previous sections, we saw that you could add an operation to a TaskContext, and re-
trieve it for use in a OperationCaller object. This manual registration and connection process
can be automated by using the service objects. There are two major players: Service and Ser-
viceRequester. The first manages operations, the second methods. We say that the Service
provides operations, while the ServiceRequester requires them. The first expresses what it
can do, the second what it needs from others to do.

Here's a simple use case for two components:

Example 2.1. Setting up a Service

The only difference between setting up a service and adding an operation, is by adding
provides("servicename") in front of addOperation.

 #include <rtt/TaskContext.hpp>
 #include <iostream>

 class MyServer : public RTT::TaskContext {
 public:
 MyServer() : TaskContext("server") {
 this->provides("display")
 ->addOperation("showErrorMsg", &MyServer::showErrorMsg, this, RTT::OwnThread)
 .doc("Shows an error on the display.")
 .arg("code", "The error code")
 .arg("msg","An error message");
 this->provides("display")
 ->addOperation("clearErrors", &MyServer::clearErrors, this, RTT::OwnThread)
 .doc("Clears any error on the display.");
 }
 void showErrorMsg(int code, std::string msg) {
 std::cout << "Code: "<<code<<" - Message: "<< msg <<std::endl;
 }
 void clearErrors() {
 std::cout << "No errors present." << std::endl;
 }
 };

Setting up the Component Interface

35

What the above code does is grouping operations in an interface that is provided by this
component. We give this interface a name, 'display' in order to allow another component to
find it by name. Here's an example on how to use this service:

Example 2.2. Using a Service

The only difference between setting up a service and adding a OperationCaller object, is by
adding requires("servicename") in front of addOperationCaller.

 #include <rtt/TaskContext.hpp>
 #include <iostream>

 class MyClient : public RTT::TaskContext {
 public:
 int counter;
 OperationCaller<void(int,std::string)> showErrorMsg;
 OperationCaller<void(void)> clearErrors;

 MyClient() : TaskContext("client"), counter(0),
 showErrorMsg("showErrorMsg"), clearErrors("clearErrors")
 {
 this->requires("display")
 ->addOperationCaller(showErrorMsg);
 this->requires("display")
 ->addOperationCaller(clearErrors);
 this->setPeriod(0.1);
 }
 bool configureHook() {
 return this->requires("display")->ready();
 }

 void updateHook() {
 if (counter == 10) {
 showErrorMsg.send(101, "Counter too large!");
 }
 if (counter == 20) {
 clearErrors.send();
 counter = 0;
 }
 ++counter;
 }
 };

What you're seeing is this: the client has 2 OperationCaller objects for calling the functions
in the "display" service. The method objects must have the same name as defined in the
'provides' lines in the previous listing. We check in configureHook if this interface is ready
to be called. Update hook then calls these methods.

The remaining question is now: how is the connection done from client to server ? The Ser-
viceRequester has a method connectTo(Service*) which does this connection from Opera-
tionCaller object to operation. If you wanted to hardcode this, it would look like:

 bool configureHook() {
 requires("display")->connectTo(getPeer("server")->provides("display"));
 return requires("display")->ready();
 }

In practice, you will use the deployer application to do the connection for you at run-time.
See the DeploymentComponent documentation for the syntax.

Setting up the Component Interface

36

6. Using Tasks
This section elaborates on the interface all Task Contexts have from a 'Task user' perspective.

6.1. Task Property Configuration and XML format
As was seen in Section 3.5, “The Attributes and Properties Interface”, Property objects can
be added to a task's interface. To read and write properties from or to files, you can use the
Marshalling service. It creates or reads files in the XML Component Property Format such
that it is human readable and modifiable.

 // ...
 TaskContext* a_task = ...
 mname = ab->getName();
 mname = ab->getName();
 a_task->getProvider<Marshalling>("marshalling")->readProperties("PropertyFile.cpf");
 // ...
 a_task->getProvider<Marshalling>("marshalling")->writeProperties("PropertyFile.cpf");

In order to access a service, we need both the type of the provider, Marshalling and the run-
time name of the service, by default "marshalling".

In the example, readProperties() reads the file and updates the task's properties and writeProp-
erties() writes the given file with the properties of the task. Other functions allow to share a
single file with multiple tasks or update the task's properties from multiple files.

The PropertyFile.cpf file syntax can be easily learnt by using writeProperties() and looking
at the contents of the file. It will contain elements for each Property or PropertyBag in your
task. Below is a component with five properties. There are three properties at the top level
of which one is a PropertyBag, holding two other properties.

 #include <rtt/TaskContext.hpp>
#include <rtt/Property.hpp>
#include <rtt/PropertyBag.hpp>

 class MyTask
 : public TaskContext
 {

 int i_param;
 double d_param;
 PropertyBag sub_bag;
 std::string s_param;
 bool b_param;
 public:
 // ...
 MyTask(std::string name)
 : TaskContext(name),
 i_param(5),
 d_param(-3.0),
 s_param("The String"),
 b_param(false)
 {
 // other code here...

Setting up the Component Interface

37

 this->addProperty("IParam", i_param).doc("Param Description");
 this->addProperty("DParam", d_param).doc("Param Description");
 this->addProperty("SubBag", sub_bag).doc("SubBag Description");

 // we call addProperty on the PropertyBag object in order to
 // create a hierarchy
 sub_bag.addProperty("SParam", s_param).doc("Param Description");
 sub_bag.addProperty("BParam", b_param).doc("Param Description");
 }
 // ...
 };

Using writeProperties() would produce the following XML file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "cpf.dtd">
<properties>

 <simple name="IParam" type="short">
 <description>Param Description</description>
 <value>5</value>
 </simple>
 <simple name="DParam" type="double">
 <description>Param Description</description>
 <value>-3.0</value>
 </simple>

 <struct name="SubBag" type="PropertyBag">
 <description>SubBag Description</description>
 <simple name="SParam" type="string">
 <description>Param Description</description>
 <value>The String</value>
 </simple>
 <simple name="BParam" type="boolean">
 <description>Param Description</description>
 <value>0</value>
 </simple>
 </struct>

</properties>

PropertyBags (nested properties) are represented as <struct> elements in this format. A
<struct> can contain another <struct> or a <simple> property.

The following table lists the conversion from C++ data types to XML Property types.

Table 2.4. C++ & Property Types

C++ Type Property type Example valid XML <val-
ue> contents

double double 3.0

int short or long -2

bool boolean 1 or 0

float float 15.0

char char c

Setting up the Component Interface

38

C++ Type Property type Example valid XML <val-
ue> contents

std::string string Hello World

unsigned int ulong or ushort 4

6.2. Task Scripts
Orocos supports two types of scripts:

• An Orocos Program Script (ops) contains a Real-Time functional program which calls
methods and sends commands to tasks, depending on classical functional logic.

• An Orocos State machine Description (osd) script contains a Real-Time (hierarchical) state
machine which dictates which program script snippets are executed upon which event.

Both are loaded at run-time into a task. The scripts are parsed to an object tree, which can
then be executed by the ExecutionEngine of a task.

6.2.1. Program Scripts

Program can be finely controlled once loaded in the Scripting service, which delegates the
execution of the script to the ExecutionEngine. A program can be paused, it's variables in-
spected and reset while it is loaded in the Processor. A simple program script can look like :

 program foo
 {
 var int i = 1
 var double j = 2.0
 changeParameter(i,j)
 }

Any number of programs may be listed in a file.

Orocos Programs are loaded as such into a TaskContext :

 TaskContext* a_task = ...

 a_task->getProvider<Scripting>("scripting")->loadPrograms("ProgramBar.ops");

When the Program is loaded in the Task Context, it can also be controlled from other scripts
or a TaskBrowser. Assuming you have loaded a Program with the name 'foo', the following
commands are available :

 foo.start()
 foo.pause()
 foo.step()
 foo.stop()

While you also can inspect its status :

 var bool ret
 ret = foo.isRunning()
 ret = foo.inError()

Setting up the Component Interface

39

 ret = foo.isPaused()

You can also inspect and change the variables of a loaded program, but as in any application,
this should only be done for debugging purposes.

 set foo.i = 3
 var double oldj = foo.j

Program scripts can also be controlled in C++, but only from the component having them,
because we need access to the scripting::ScriptingService object, which is only available
locally to the component. Take a look at the scripting::ProgramInterface class reference for
more program related functions. One can get a pointer to a program by calling:

 scripting::ScriptingService* sa = dynamic_cast<scripting::ScriptingService*>(this-
>getService("scripting"));
 scripting::ProgramInterface* foo = sa->getProgram("foo");
 if (foo != 0) {
 bool result = foo->start(); // try to start the program !
 if (result == false) {
 // Program could not be started.
 // Execution Engine not running ?
 }
 }

6.2.2. State Machines

Hierarchical state machines are modelled in Orocos with the scripting::StateMachine class.
They are like programs in that they can call a peer task's members, but the calls are grouped
in a state and only executed when the state machine is in that state. This section limits to
showing how an Orocos State Description (osd) script can be loaded in a Task Context.

 TaskContext* a_task = ...

 a_task->getProvider<Scripting>("scripting")->loadStateMachines("StateMachineBar.osd");

When the State Machine is loaded in the Task Context, it can also be controlled from your
scripts or TaskBrowser. Assuming you have instantiated a State Machine with the name
'machine', the following commands are available :

 machine.activate()
 machine.start()
 machine.pause()
 machine.step()
 machine.stop()
 machine.deactivate()
 machine.reset()
 machine.reactive()
 machine.automatic() // identical to start()
 machine.requestState("StateName")

As with programs, you can inspect and change the variables of a loaded StateMachine.

 set machine.myParam = ...

Setting up the Component Interface

40

The Scripting Manual goes in great detail on how to construct and control State Machines.

7. Deploying Components
An Orocos component can be used in both embedded (<1MB RAM) or big systems (128MB
RAM), depending on how it is created or used. This is called Component Deployment as the
target receives one or more component implementations. The components must be adapted
as such that they fit the target.

7.1. Overview
Figure 2.10, “ Component Deployment Levels ” shows the distinction between the three
levels of Component Deployment.

Three levels of using or creating Components can be accomplished in Orocos: Not distrib-
uted, embedded distributed and fully distributed.

Figure 2.10. Component Deployment Levels

If your application will not use distributed components and requires a very small footprint,
the base::TaskCore can be used. The Orocos primitives appear publicly in the interface and
are called upon in a hard-coded way.

If you application requires a small footprint and distributed components, the C++ Interface
of the TaskContext can be used in combination with a Distribution Library which does the
network translation. It handles a predefined set of data types (mostly the 'C' types) and needs

Setting up the Component Interface

41

to be adapted if other data types need to be supported. There is no portable distribution library
available.

If footprint is of no concern to your application and you want to distribute any component
completely transparently, the TaskContext can be used in combination with a Remoting Li-
brary which does the network translation. A CORBA implementation of such a library is
being developed on. It is a write-once, use-many implementation, which can pick up user
defined types, without requiring modifications. It uses the Orocos Type System to manage
user defined types.

7.2. Embedded TaskCore Deployment
A TaskCore is nothing more than a place holder for the Execution Engine and appli-
cation code functions (configureHook(), cleanupHook(), startHook(), updateHook() and
stopHook()). The Component interface is built up by placing the Orocos primitives as pub-
lic class members in a TaskCore subclass. Each component that wants to use this TaskCore
must get a 'hard coded' pointer to it (or the interface it implements) and invoke the command,
method etc. Since Orocos is by no means informed of the TaskCore's interface, it can not
distribute a TaskCore.

7.3. Embedded TaskContext Deployment: C++ In-
terface

Instead of putting the Orocos primitives in the public interface of a subclass of TaskCore, one
can subclass a TaskContext and register the primitives to the Local C++ Interface. This is a
reduced interface of the TaskContext, which allows distribution by the use of a Distribution
Library.

The process goes as such: A component inherits from TaskContext and has some Orocos
primitives as class members. Instead of calling:

 this->addOperation("name", &foo).doc("Description").arg("Arg1","Arg1 Description");

and providing a description for the primitive as well as each argument, one writes:

 this->addLocalOperation("name", &foo);

This functions does no more than a pointer registration, but already allows all C++ code in
the same process space to use the added primitive.

In order to access the interface of such a Component, the user code may use:

 taskA->getLocalOperation("name");

You can only distribute this component if an implementation of a Distribution Library is
present. The specification of this library, and the application setup is in left to another design
document.

7.4. Full TaskContext Deployment: Dynamic Inter-
face

In case you are building your components as instructed in this manual, your component is
ready for distribution as-is, given a Remoting library is used. The Orocos CORBA package
implements such a Remoting library.

Setting up the Component Interface

42

7.5. Putting it together
Using the three levels of deployment in one application is possible as well. To save space or
execution efficiency, one can use TaskCores to implement local (hidden) functionality and
export publicly visible interface using a TaskContext. Figure 2.11, “ Example Component
Deployment. ” is an small example of a TaskContext which uses two TaskCores to delegate
work to. The Execution Engines may run in one or multiple threads.

Figure 2.11. Example Component Deployment.

8. Advanced Techniques
If you master the above methods of setting up tasks, this section gives some advanced uses
for integrating your existing application framework in Orocos Tasks.

8.1. Polymorphism : Task Interfaces
Most projects have define their own task interfaces in C++. Assume you have a class with
the following interface :

 class DeviceInterface
 {
 public:
 /**
 * Set/Get a parameter. Returns false if parameter is read-only.
 */
 virtual bool setParameter(int parnr, double value) = 0;
 virtual double getParameter(int parnr) const = 0;

 /**

Setting up the Component Interface

43

 * Get the newest data.
 * Return false on error.
 */
 virtual bool updateData() = 0;
 virtual bool updated() const = 0;

 /**
 * Get Errors if any.
 */
 virtual int getError() const = 0;
 };

Now suppose you want to do make this interface available, such that program scripts of other
tasks can access this interface. Because you have many devices, you surely want all of them
to be accessed transparently from a supervising task. Luckily for you, C++ polymorphism
can be transparently adopted in Orocos TaskContexts. This is how it goes.

8.1.1. Step 1 : Export the interface

We construct a TaskContext, which exports your C++ interface to a task's interface.

 #include <rtt/TaskContext.hpp>
 #include <rtt/Operation.hpp>
 #include "DeviceInterface.hpp"

 class TaskDeviceInterface
 : public DeviceInterface,
 public TaskContext
 {
 public:
 TaskDeviceInterface()
 : TaskContext("DeviceInterface")
 {
 this->setup();
 }

 void setup()
 {
 // Add client thread operations :
 this->addOperation("setParameter",
 &DeviceInterface::setParameter, this, ClientThread)
 .doc("Set a device parameter.")
 .arg("Parameter", "The number of the parameter.")
 .arg("New Value", "The new value for the parameter.");

 this->addOperation("getParameter",
 &DeviceInterface::getParameter, this, ClientThread)
 .doc("Get a device parameter.")
 .arg("Parameter", "The number of the parameter.");
 this->addOperation("getError",
 &DeviceInterface::getError, this, ClientThread)
 .doc("Get device error status.");

 // Add own thread operations :
 this->addOperation("updateData",
 &DeviceInterface::updateData, this, OwnThread)
 .doc(&DeviceInterface::updated)

Setting up the Component Interface

44

 .arg("Command data acquisition.");
 }
 };

The above listing just combines all operations which were introduced in the previous sections.
Also note that the TaskContext's name is fixed to "DeviceInterface". This is not obligatory
though.

8.1.2. Step 2 : Inherit from the new interface

Your DeviceInterface implementations now only need to inherit from TaskDeviceInterface
to instantiate a Device TaskContext :

 #include "TaskDeviceInterface.hpp"

 class MyDevice_1
 : public TaskDeviceInterface
 {
 public:

 bool setParameter(int parnr, double value) {
 // ...
 }
 double getParameter(int parnr) const { // ...
 }
 // etc.
 };

8.1.3. Step 3 : Add the task to other tasks

The new TaskContext can now be added to other tasks. If needed, an alias can be given such
that the peer task knows this task under another name. This allows the user to access different
incarnations of the same interface from a task.

 // now add it to the supervising task :
 MyDevice_1 mydev;
 supervisor.addPeer(&mydev, "device");

From now on, the "supervisor" task will be able to access "device". If the implementation
changes, the same interface can be reused without changing the programs in the supervisor.

A big warning needs to be issued though : if you change a peer at run-time (after parsing
programs), you need to reload all the programs, functions, state contexts which use that peer
so that they reference the new peer and its C++ implementation.

8.1.4. Step 4 : Use the task's interface

To make the example complete, here is an example script which could run in the supervisor
task :

 program ControlDevice
 {

Setting up the Component Interface

45

 const int par1 = 0
 const int par2 = 1
 device.setParameter(par1, supervisor.par1)
 device.setParameter(par2, supervisor.par2)

 while (device.getError() == 0)
 {
 if (this.updateDevice("device") == true)
 device.updateData()
 }
 this.handleError("device", device.getError())
 }

To start this program from the TaskBrowser, browse to supervisor and type the command :

 ControlDevice.start()

When the program "ControlDevice" is started, it initialises some parameters from its own
attributes. Next, the program goes into a loop and sends updateData commands to the device
as long as underlying supervisor (i.e. "this") logic requests an update and no error is reported.
This code guarantees that no two updateData commands will intervene each other since the
program waits for the commands completion or error. When the device returns an error, the
supervisor can then handle the error of the device and restart the program if needed.

The advantages of this program over classical C/C++ functions are :

• If any error occurs (i.e. a method returns false), the program stops and other programs or
state contexts can detect this and take appropriate action.

• The "device.updateData()" call waits for completion of the remote operation.

• While the program waits for updateData() to complete, it does not block other programs,
etc within the same TaskContext and thread.

• There is no need for additional synchronisation primitives between the supervisor and the
device since the operations have the OwnThread execution type. Which leads to :

• The operation is executed at the priority of the device's thread, and not the supervisor's
priority.

• The operation can never corrupt data of the device's thread, since it is
serialised(executed after) with the programs running in that thread.

46

Chapter 3. Orocos RTT
Scripting Reference

This document describes the Orocos Real-Time Scripting service

1. Introduction
The Orocos Scripting language allows users of the Orocos system to write programs and state
machines controlling the system in a user-friendly realtime script language. The advantage of
scripting is that it is easily extendible and does not need recompilation of the main program.

2. General Scripting Concepts
Before starting to explain Program Syntax, it is necessary to explain some general concepts
that are used throughout the program syntax.

2.1. Comments
Various sorts of comments are supported in the syntax. Here is a small listing showing the
various syntaxes:

 # A perl-style comment, starting at a '#', and running until
 # the end of the line.

 // A C++/Java style comment, starting at '//', and running
 // until the end of the line.

 /* A C-style comment, starting at '/*', and running until
 the first closing */ /* Nesting is not allowed, that's
 why I have to start a new comment here :-)
 */

Whitespace is in general ignored, except for the fact that it is used to separate tokens.

2.2. Identifiers
Identifiers are names that the user can assign to variables, constants, aliases, labels. The same
identifier can only be used once, except that for labels you can use an identifier that has
already been used as a variable, constant or alias. However, this is generally a bad idea, and
you shouldn't do it.

Some words cannot be used as identifiers, because they are reserved by the Orocos Scripting
Framework, either for current use, or for future expansions. These are called keywords. The
current list of reserved keywords is included here:

alias double if then
and else include time
break end int to
bool export next true
char local not try

Orocos RTT Scripting Reference

47

catch false or uint
const for return until
define foreach set var
do global string while
These, and all variations on the (upper- or lower-) case of each of the letters are reserved,
and cannot be used as identifiers.

2.3. Expressions
Expressions are a general concept used throughout the Parser system. Expressions represent
values that can be calculated at runtime (like a+b). They can be used as arguments to func-
tions, conditions and whatmore. Expressions implicitly are of a certain type, and the Parser
system does strong type-checking. Expressions can be constructed in various ways, that are
described below...

2.3.1. Literals

Literal values of various types are supported: string, int, double, bool. Boolean literals are
either the word "true" or the word "false". Integer literals are normal, positive or negative
integers. Double literals are C/C++ style double-precision floating point literals. The only
difference is that in order for the Parser to be able to see the difference with integers, we
require a dot to be present. String literals are surrounded by double quotes, and can contain
all the normal C/C++ style escaped characters. Here are some examples:

 // a string with some escaped letters:
 "\"OROCOS rocks, \" my mother said..."
 // a normal integer
 -123
 // a double literal
 3.14159265358979
 // and another one..
 1.23e10

2.3.2. Constants, Variables and Aliases

Constants, variables and aliases allow you to work with data in an easier way. A constant is
a name which is assigned a value at parse time, and keeps that value throughout the rest of
the program. A variable gets its value assigned at runtime and can be changed at other places
in the program. An alias does not carry a value, it is defined with an expression, for which it
acts as an alias or an abbreviation during the rest of the program. All of them can always be
used as expressions. Here is some code showing how to use them.

 // define a variable of type int, called counter,
 // and give it the initial value 0.
 var int counter = 0
 // add 1 to the counter variable
 counter = counter + 1

 // make the name "counterPlusOne" an alias for the
 // expression counter + 1. After this, using
 // counterPlusOne is completely equivalent to writing
 // counter + 1
 alias int counterPlusOne = counter + 1
 // you can assign an arbitrarily complex expression

Orocos RTT Scripting Reference

48

 // to an alias
 alias int reallycomplexalias = ((counter + 8) / 3)*robot.position

 // define a constant of type double, with name "pi"
 const double pi = 3.14159265358979
 const double pi2 = 2*pi // ok, pi2 is 6.28...
 const int turn = counter * pi // warning ! turn will be 0 !

 // define a constant at _parse-time_ !
 const totalParams = table.getNbOfParams()

Variables, constants and aliases are defined for the following types: bool, int, double, string
and array. The Orocos Typekit System allows any application or library to extend these types.

2.3.3. Strings and Arrays

For convenience, two variable size types have been added to the parser : string and array.
They are special because their contents have variable size. For example a string can be empty
or contain 10 characters. The same holds for an array, which contains doubles. String and
array are thus container types. They are mapped on std::string and std::vector<double>. To
access them safely from a task method or command, you need to to pass them by const
reference : const std::string& s, const std::vector<double>& v.

Container types can be used in two ways : with a predefined capacity (ie the possibility
to hold N items), or with a free capacity, where capacity is expanded as there is need for
it. The former way is necessary for real-time programs, the latter can only be used in non
real-time tasks, since it may cause a memory allocation when capacity limits are exceeded.
The following table lists all available constructors:

Table 3.1. array and string constructors

Copy Syntax (copy done at
run-time)

Pre-allocate syntax (init
done at parse-time)

Notes

var string x = string() var string x Creates an empty string.
(std::string)

var string x = string("Hello
 World")

var string x("Hello World") Creates a string with contents
"Hello World".

var array x = array() var array x Creates an empty array.
(std::vector<double>)

var array x = array(10) var array x(10) Creates an array with 10 ele-
ments, all equal to 0.0.

var array x = array(10, 3.0) var array x(10, 3.0) Creates an array with 10 ele-
ments, all equal to 3.0.

var array x = array(1.0, 2.0, 3.0) var array x(1.0, 2.0, 3.0) Creates an array with 3 ele-
ments: {1.0, 2.0, 3.0}. Any
number of arguments may be
given.

Warning

The 'Copy Syntax' syntax leads to not real-time scripts because the size is ex-
panded at run-time. See the examples below.

Orocos RTT Scripting Reference

49

Example 3.1. string and array creation

 // A free string and free array :
 // applestring is expanded to contain 6 characters (non real-time)
 var string applestring = "apples"

 // values is expanded to contain 15 elements (non real-time)
 var array values = array(15)

 // A fixed string and fixed array :
 var string fixstring(10) // may contain a string of maximum 10 characters

 fixstring = applestring // ok, enough capacity
 fixstring = "0123456789x" // allocates new memory (non real-time).

 var array fixvalues(10) // fixvalues pre-allocated 10 elements
 var array morevalues(20) // arrays are initialised with n doubles of value 0.0

 fixvalues = morevalues // will cause allocation in 'fixvalues'
 morevalues = fixvalues // ok, morevalues has enough capacity, now contains 10 doubles

 fixvalues = morevalues // ok, since morevalues only contains 10 items.

 values = array(20) // expand values to contain 20 doubles. (non real-time)

 var array list(1.0, 2.0, 3.0, 4.0) // list contains {1.0, 2.0, 3.0, 4.0}
 var array biglist; // creates an empty array
 biglist = list // 'biglist' is now equal to 'list' (non real-time)

Important

The 'size' value given upon construction (array(10) or string(17)) must be a legal
expression at parse time and is only evaluated once. The safest method is using
a literal integer (i.e. (10) like in the examples), but if you create a Task constant
or variable which holds an integer, you can also use it as in :

 var array example(5 * numberOfItems)

The expression may not contain any program variables, these will all be zero
upon parse time ! The following example is a common mistake also :

 numberOfItems = 10
 var array example(5 * numberOfItems)

Which will not lead to '50', but to '5 times the value of numberOfItems, being
still zero, when the program is parsed.

Another property of container types is that you can index (use []) their contents. The index
may be any expression that return an int.

 // ... continued
 // Set an item of a container :
 for (var int i=0; i < 20; i = i+1)
 values[i] = 1.0*i

 // Get an item of a container :
 var double sum

Orocos RTT Scripting Reference

50

 for (var int i=0; i < 20; i = i+1)
 sum = sum + values[i]

If an assignment tries to set an item out of range, the assignment will fail, if you try to read
an item out of range, the result will return 0.0, or for strings, the null character.

2.3.4. Operators

Expressions can be combined using the C-style operators that you are already familiar with if
you have ever programmed in C, C++ or Java. Most operators are supported, except for the if-
then-else operator ("a?b:c") and the "++/--" post-/pre- increment operators. The precedence
is the same as the one used in C, C++, Java and similar languages. In general all that you
would expect, is present.

2.3.5. The '.' Operator

When a data type is a C++ struct or class, it contains fields which you might want to access
directly. These can be accessed for reading or writing by using a dot '.' and the name of the
field:

 var mydata d1;

 d1.count = 1;
 d1.name = "sample";

Some value types, like array and string, are containing read-only values or useful information
about their size and capacity:

 var string s1 = "abcdef"

 // retrieve size and capacity of a string :
 var int size = s1.size
 var int cap = s1.capacity

 var array a1(10)
 var array a2(20) = a1

 // retrieve size and capacity of a array :
 var int size = a2.size // 10
 var int cap = a2.capacity // 20

2.4. Parsing and Loading Programs
Before we go on describing the details of the programs syntax, we show how you can load
a program in your Real-Time Task.

The easiest way is to use the DeploymentComponent where you can specify a script to load
in the application's deployment XML file or using the TaskBrowser. You can also do it in
C++, as described below.

The example below is for a program script programs.ops which contains a program with the
name "progname".

2.4.1. In the TaskBrowser

This is the easiest procedure. You need to tell the taskbrowser that you want the scripting
service and then use the scripting service to load the program script:

Orocos RTT Scripting Reference

51

 Component [R]> .provide scripting
 Trying to locate service 'scripting'...
 Service 'scripting' loaded in Component
 Component [R]> scripting.loadPrograms("programs.ops")
 = true
 Component [R]> progname.start()
 = true

2.4.2. In C++ code

Parsing the program is done using the 'getProvider' function to call the scripting service's
functions:

 #include <rtt/Activity.hpp>
 #include <rtt/TaskContext.hpp>
 #include <rtt/scripting/Scripting.hpp>

 using namespace RTT;

 TaskContext tc;
 tc.setActivity(new Activity(5, 0.01));

 // Watch Logger output for errors :
 tc.getProvider<Scripting>("scripting")->loadPrograms("program.ops");

 // start a program :
 tc.getProvider<Scripting>("scripting")->startProgram("progname");

The Scripting service will load all programs and functions into 'tc'.The program "progname"
is then started. Programs can also be started from within other scripts.

In case you wish to have a pointer to a program script object (scripting::ProgramInterface),
you can have so only from within the owner TaskContext by writing:

 // Services are always accessed using a shared_ptr
 // cast the "scripting" RTT::Service to an RTT::scripting::ScriptingService shared_ptr:
 RTT::scripting::ScriptingService::shared_ptr ss
 = boost::dynamic_pointer_cast<scripting::ScriptingService>(this->provides()-
>getService("scripting"));

 ProgramInterfacePtr p = ss->getProgram("progname");

 // start a program :
 p->start();

3. Orocos Program Scripts

3.1. Program Execution Semantics

An Orocos program script is a list of statements, quite similar to a C program. Programs can
call C/C++ functions and functions can be loaded into the system, such that other programs
can call them. Program scripts are executed by the Execution Engine.

Orocos RTT Scripting Reference

52

In general, program statements are executed immediately one after the other. However, when
the program needs to wait for a result, the Execution Engine temporarily postpones program
execution and will try again in the next execution period. This happens typically when yield
was called. Calling operations and expressions on the other hand typically do not impose a
yield, and thus are executed immediately after each other.

3.2. Program Syntax

3.2.1. program

A program is formed like this:

 program progname {
 // an arbitrary number of statements
 }

The statements are executed in order, starting at the first and following the logical execution
path imposed by your program's structure. If any of the statements causes a run-time error,
the Program Processor will put the program in the error state and stop executing it. It is the
task of other logic (like state machines, see below) to detect such failures.

3.2.2. Variables and Assignments

A variable is declared with the var keyword and can be changed using the = symbol. It looks
like this:

 var int a, b, c;
 a = 3 * (b = (5 * (c = 1))); // a = 15, b = 5, c = 1

The semicolon at the end of the line is optional, but when omitted, a newline must be used
to indicate a new statement.

3.2.3. The if then else Statement

A Program script can contain if..then..else blocks, very similar to C syntax, except that the
then word is mandatory and that the braces () can be omitted. For example:

 var int x = 3

 if x == 3 then x = 4
 else x = 5

 // or :
 if (x == 3) then {
 x = 4
 // ...
 } else {
 x = 5
 // ...
 }

It is thus possible to group statements. Each statement can be another if clause. An else is
always referring to the last if, just like in C/C++. If you like, you can also write parentheses
around the condition. The else statement is optional.

Orocos RTT Scripting Reference

53

3.2.4. The for Statement

The for statement is almost equal to the C language. The first statement initialises a variable
or is empty. The condition contains a boolean expression (use 'true' to simulate an empty
condition). The second statement changes a variable or is empty.

 // note the var when declaring i:
 for (var int i = 0; i != 10; i = i + 1)
 log("Hello World")
 // or group:
 for (i = 0; i < b; i = i + 1) {
 log("In the loop")
 // ...
 }

Note that Orocos scripting does not (yet) support the postfix or prefix increment/decrement
operators like ++ and --.

3.2.5. The while Statement

The while statement is another looping primitive in the Orocos script language. A do state-
ment is not implemented

 var int i = 0;
 while i < 10
 i = i +1
 // or group:
 i = 0;
 while i < 10 {
 log("In while")
 i = i + 1
 // ...
 }

As with the if statement, you can optionally put parentheses around the condition 'i < 10'. Note
that Orocos scripting does not support the postfix or prefix increment/decrement operators
like ++ and --.

3.2.6. The break Statement

To break out of a while or for loop, the break statement is available. It will break out of the
innermost loop, in case of nesting.

 var int i = 0
 while true {
 i = i + 1
 if i == 50 then
 break
 // ...
 }

It can be used likewise in a for loop.

Orocos RTT Scripting Reference

54

3.2.7. Invoking Task Operations
Operations can be called like calling C functions. They take arguments and return a value
immediately. They can be used in expressions or stand alone :

 // var int arg1 = 3, arg2 = 4
 // ignore the return value :
 peer.method(arg1, arg2)

 // this will only work if the method returns a boolean :
 if (peer.method(arg1, arg2)) {
 // ...
 }

 // use another method in an expression :
 data = comp.getResult(arg1) * 20. / comp.value

These operations are executed directly one after the other.

Warning

A method throwing an exception, will cause a run-time program error. If this is
not wanted, put 'try' in front of the method call statement, as shown in the next
section.

3.2.8. Try ... Catch statements
When a method throws a C++ exception, the program goes into an error state and waits for
user intervention. This can be intercepted by using a try...catch statement. It tries to execute
the method, and if it throws, the optional catch clause is executed :

 // just try ignores the exception of action :
 try comp.action(args)

 // When an exception is thrown, execute the catch clause :
 try comp.action(args) catch {
 // statements...
 }

If the method did not throw, the catch clause is not executed. Note that you can not inspect
the C++ exception, so only rudimentary error handling is available.

3.3. Setting Task Attributes and Properties
Task attributes/Properties are set in the same way as ordinary script variables.

 // Setting a property named MyProp of type double
 var double d = 5.0
 comp.MyProp = d

3.4. function
Statements can be grouped in functions. A function can only call another function which is
earlier defined. Thus recursive function calling is not allowed in this language.

 // A function only known in the current scripting service

Orocos RTT Scripting Reference

55

 void func_name(int arg1, double arg2) {
 // an arbitrary number of statements
 }

 // A function put in the interface of the component
 export double func_name(bool arg) {
 // ...
 if (arg) then return +10.0; else return -10.0;
 }

 // A function put in the global service interface of the current process
 global double global_func_name(bool arg) {
 // ...
 if (arg) then return +10.0; else return -10.0;
 }

A function can have any number of arguments, which are passed by value, and may return
a value.

By default, a function is only known in the scripting service of the current component. You
can make this explicit by writing the local keyword in front of the return value. This function
will be found as an operation in the 'scripting' Service of the current component. You should
not rely on the presence or name of this Operation, since it is considered as 'internal' to the
scripting Service. Future releases may relocate or rename this function.

You can add a function to the interface of the current component by using the export keyword.
This allows you to extend the interface of a component at run-time.

Finally, the global keyword puts the defined function in the internal::GlobalService, which
makes it available for any component or script in the current process.

You may redefine a function with the same name, in which case a warning will be logged
and the new function is installed. In case the same function name is in use locally, at the
TaskContext interface or globally, the local function is used first, then the TaskContext func-
tion and finally the global function.

3.5. Calling functions
A function can be called as a regular Operation :

 foo(arg) // is a global, local or exported function of the current component

If one of the statements of the called function throws an exception, an exception is thrown in
the current program and the calling program goes into the error state.

Note

The 'call' keyword has been deprecated since version 2.5 and should no longer
be used.

3.6. return
The return statement behaves like in traditional languages. For programs and functions that
do not return a value, the return statement is written like:

Orocos RTT Scripting Reference

56

 export void foo(int i) {
 // ...
 if (i < 0)
 return
 // use i...
 }

When the return statement returns a value, it must be on the same line as the return word:

 export int foo(int i) {
 // ...
 if (i < 0)
 return -1 // returned value on same line.
 // use i...
 return i*10
 }

As the examples show, you can return from a function from multiple places.

3.7. Waiting : The 'yield' statement
A special statement 'yield' is provided. It temporarily suspends the execution of the current
script and allows the Execution Engine in which it runs to do something else. You will need
this in an endless while loop, for example:

 while(true) {
 log("Waiting...")
 yield
 }

If the yield statement is omitted, the script would never return and consume all available
processor time. Yield suspends the execution of this script until the ExecutionEngine is trig-
gered again, for example, when an asynchronous operation is received or by the expiration
of the period in a periodically running component.

4. Starting and Stopping Programs from
scripts

Once a program is parsed and loaded into the Execution Engine, it can be manipulated from
another script. This can be done through the programs subtask of the TaskContext in which
the program was loaded. Assume that you loaded "progname" in task "ATask", you can write

 ATask.progname.start()
 ATask.progname.pause()
 ATask.progname.step()
 ATask.progname.step()
 ATask.progname.stop()

The first line starts a program. The second line pauses it. The next two lines executes one
command each of the program (like stepping in a debugger). The last line stops the program
fully (running or paused).

Some basic properties of the program can be inspected likewise :

Orocos RTT Scripting Reference

57

 var bool res = ATask.progname.isRunning()
 res = ATask.progname.inError()
 res = ATask.progname.isPaused()

which all return a boolean indicating true or false.

5. Orocos State Descriptions : The Re-
al-Time State Machine

5.1. Introduction

A scripting::StateMachine is the state machine used in the Orocos system. It contains a col-
lection of states, and each state defines a Program on entry of the state, when it is run and
on exit. It also defines all transitions to a next state. Like program scripts, a StateMachine
must be loaded in a Task's Execution Engine.

5.2. StateMachine Mechanism

A StateMachine is composed of a set of states. A running StateMachine is always in exactly
one of its states. One time per period, it checks whether it can transition from that state to
another state, and if so makes that transition. By default, only one transition can be made in
one Execution Engine step.

Besides a list of the possible transitions, every state also keeps record of programs to be
executed at certain occasions. There can be up to four (all optional) programs in every state:
the entry program (which will be executed each time the state is entered), the run program
(which will be executed every time the state is the active state), the handle program (which
will be executed right after run, if no transition succeeds) and the exit program (which will
be executed when the state is left).

There can be more than one StateMachine. They separately keep track of their own current
state, etc.

A StateMachine can have any number of states. It needs to have exactly one "initial state",
which is the state that will be entered when the StateMachine is first activated. There is also
exactly one final state, which is automatically entered when the StateMachine is stopped.
This means that the transition from any state to the final state must always be meaningful.

A State Machine can run in two modes. They are the automatic mode and the reactive (also
'event' or 'request') mode. You can switch from one mode to another at run-time.

5.2.1. Reactive Mode: State Change Semantics

In order to enter the reactive mode, the State Machine must be 'activated'. When active, two
possible causes of state transitions can exist: because an event occured or because a transition
was requested.

Orocos RTT Scripting Reference

58

Figure 3.1. State Change Semantics in Reactive Mode

A state can list to which Orocos data flow events it reacts, and under which conditions it
will make a transition to another state. A state only reacts to events when its entry program
is fully executed (done) and an event may be processed when the run program is executed,
thus interrupt the run program. The first event that triggers a transition will 'win' and the
state reacts to no more events, executes the event's transition program, then the state's exit
program, and finally, the next state is entered and its entry program is executed. The next
state now listens for events (if any) to make a transition or just executes its run program.

Another program can request a transition to a particular state as well. When the request ar-
rives, the current state checks its transition conditions and evaluates if a transition to that
state is allowed. These conditions are separately listed from the event transitions above. If
a transition condition is valid, the exit program of the current state is called, the transition
program and then the entry program of the requested state is called and the requested state's
run program is executed. If a transition to the current state was requested, only the run pro-
gram of the current state is executed.

In this mode, it is also possible to request a single transition to the 'best' next state. All tran-
sition conditions are evaluated and the first one that succeeds makes a transition to the target
state. This mechanism is similar to automatic mode below, but only one transition is made
(or if none, handle is executed) and then, the state machine waits again. The step() command
triggers this behaviour.

5.2.2. Automatic Mode: State Change Semantics

In order to enter automatic mode, the State Machine must be first reactive and then started
with the start() command (see later on).

Orocos RTT Scripting Reference

59

Note

This mechanism is in addition to 'reactive' mode. A state machine in automatic
mode still reacts to events.

The automatic mode additionally actively evaluates guard conditions.
Event reaction remains in effect, but is not shown in this diagram.

Figure 3.2. State Change Semantics in Automatic Mode

In automatic mode, after the run program of the current state finishes, the transition table (to
other states) of the current state is evaluated. If a transition succeeds, the transition program
is executed, then the exit program of the current state is called and then the entry program
of the next state is called. If no transition evaluated to true, the handle program (if any) of
the current state is called. This goes on until the automatic mode is left, using the pause, stop
or reactive command.

5.3. Parsing and Loading StateMachines

Analogous to the Program section, we first show how you can load a StateMachine in your
Real-Time Task. Assume that you have a StateMachine "MachineInstanceName" in a file
state-machine.osd.

5.3.1. In the TaskBrowser

This is the easiest procedure. You need to tell the taskbrowser that you want the scripting
service and then use the scripting service to load the state machine

 Component [R]> .provide scripting
 Trying to locate service 'scripting'...
 Service 'scripting' loaded in Component
 Component [R]> scripting.loadStateMachines("state-machine.osd")
 = true
 Component [R]> MachineInstanceName.activate()

Orocos RTT Scripting Reference

60

 = true
 Component [R]> MachineInstanceName.start()
 = true

5.3.2. In C++ code

Parsing the StateMachine is very analogous to parsing Programs in C++:

 #include <rtt/Activity.hpp>
 #include <rtt/TaskContext.hpp>
 #include <rtt/scripting/Scripting.hpp>

 using namespace RTT;

 TaskContext tc;
 tc.setActivity(new Activity(5, 0.01));

 tc.getProvider<Scripting>("scripting")->loadStateMachines("state-machine.osd");

 // activate a state machine :
 tc.getProvider<Scripting>("scripting")->activateStateMachine("MachineInstanceName");
 // start a state machine (automatic mode) :
 tc.getProvider<Scripting>("scripting")->startStateMachine("MachineInstanceName");

The Scripting service loads all instantiated state machines in tc. StateMachines have a more
complex lifetime than Programs. They need first to be activated, upon which they enter a
fixed initial state. When they are started, they enter automatic mode and state transitions to
other states can take place. StateMachines can also be manipulated from within other scripts.

In case you wish to have a pointer to a state machine script object (scripting::StateMachine),
you can have so only from within the owner TaskContext by writing:

 // Services are always accessed using a shared_ptr
 // cast the "scripting" RTT::Service to an RTT::scripting::ScriptingService shared_ptr:
 RTT::scripting::ScriptingService::shared_ptr ss
 = boost::dynamic_pointer_cast<scripting::ScriptingService>(this->provides()-
>getService("scripting"));

 StateMachinePtr sm = ss->getStateMachine("MachineInstanceName");

 // activate and start a StateMachine :
 sm->activate();
 sm->start();

5.4. Defining StateMachines

You can think of StateMachines somewhat like C++ classes. You first need to define a type
of StateMachine, and you can then instantiate it any number of times afterwards. A StateMa-
chine (the type) can have parameters, so every instantiation can work differently based on
the parameters it got in its instantiation.

A StateMachine definition looks like this :

Orocos RTT Scripting Reference

61

Example 3.2. StateMachine Definition Format

 StateMachine MyStateMachineDefinition
 {
 initial state myInit
 {
 // all these programs are optional and can be left out:
 entry {
 // entry program
 }
 run {
 // run program
 }
 handle {
 // handle program
 }
 exit {
 // exit program
 }
 // Ordered event based and conditional select statements
 transition ... { /* transition program */ } select ...
 transition ...

 }

 final state myExit {
 entry {
 // put everything in a safe state.
 }
 // leave out empty programs...

 transition ...
 }

 state Waiting {
 // ...
 }

 // ... repeat
 }

 // See Section 5.5, “Instantiating Machines: SubMachines and RootMachines” :
 RootMachine MyStateMachineDefinition MachineInstanceName

A StateMachine definition: a StateMachine can have any number of states. It needs to have
exactly one "initial state" (which is the state that will be entered when the StateMachine is
first started). Within a state, any method is optional, and a state can even be defined empty.

5.4.1. The state Statement

A state machine can have an unlimited number of states. A state contains optionally 4 pro-
grams : entry, run, handle, exit. Any one of them is optional, and a state can even conceivably
be defined empty.

Orocos RTT Scripting Reference

62

5.4.2. The entry and exit Statements

When a state is entered for the first time, the entry program is executed. When it is left, the
exit program is called. The execution semantics are identical to the program scripts above.

5.4.3. The run Statement

The run program serves to define which activity is done within the state. After the entry
program finishes, the run program is immediately started. It may be interrupted by the events
that state reacts to. In event mode, the run program is executed once (although it may use
an infinite loop to repeatedly execute statements). In automatic mode, when the run program
completes, and no transitions to another state can be made (see below) it is started again (in
the next execution step).

5.4.4. The handle and transition Statement

When the run program finishes in automatic mode, the state evaluates its transitions to other
states. The handle program is called only when no transition can be found to another state.
The transitions section defines one or more select state statements. These can be guarded by
if...then clauses (the transition conditions):

 // In state XYZ :
 // conditionally select the START state
 transition if HMI.startPushed then {
 // (optional)
 // transition program: HMI.startPushed was true
 // when finished, go to START state
 } select START

 // next transition condition, with a transition failure program:
 transition if HMI.waiting then
 select WAIT else {
 // (optional)
 // transition failure program: HMI.startPushed was false
 }

 handle {
 // only executed if no transition above could be made
 // if startPushed and waiting were false:
 // ...
 }

The transitions are checked in the same order as listed. A transition is allowed to select the
current state, but the exit and entry functions will not be called in that case. Even more, a
transition to the current state is always considered valid and this can not be overridden.

5.4.5. State Preconditions

Often it's useful to specify some preconditions that need to hold before entering a state. Oro-
cos states explicitly allow for this. A state's preconditions will be checked before the state
is entered.

Preconditions are specified as follows:

 state X {
 // make sure the robot is not moving axis 1 when entering this state
 // and a program is loaded.

Orocos RTT Scripting Reference

63

 precondition robot.movingAxis(1) == false
 precondition programLoaded == true
 // ...
 }

They are checked in addition to transitions to that state and can make such a transition fail,
hence block the transition, as if the transition condition in the first place did not succeed.

5.4.6. Data Flow Event Transitions

An important property of state machines is that they can react to external (asynchronous)
events. Orocos components can define reactions to data arriving on InputPorts. When new
data arrives on this port, we speak of an 'event'.

Note

A StateMachine can only react to InputPorts which have been added with 'ad-
dEventPort' to the TaskContext.

Event transitions are an extension to the transitions above and cite an InputPort name between
the transition and the if statement. They are specified as:

 state X {
 var double d
 transition x_in_port(d) if (d >1.3) then {
 // transition succeeds, transition program:
 // ...
 } select ONE_STATE else {
 // transition fails, failure program:
 // ...
 } select OTHER_STATE

 // other events likewise...
 }

Both the transition programs and the the select statements are optional, but at least a program
or select statement must be given. The

 transition x_in_port(d) if (d >1.3) then {

short notation statement is equivalent to writing:

 transition if (x_in_port(d) == NewData && d >1.3) then {...

Important

This short notation differs however from the long form as such: if multiple tran-
sitions are waiting on the same port, but with a different guard, the short notation
will give all transitions a chance to see the NewData return value. If a user would
use the long form, only the first transition statement would see NewData, all the
others would see OldData as return value. Hence the short notation is prefered.

When the input port x_in_port receives NewData, our state machine reacts to it and the data is
stored in d. The if ... then statement may check this variable and any other state variables and
methods to evaluate the transition. If it succeeds, an optional transition program may be given
and a target state selected (ONE_STATE). if the transition fails, an optional failure program

Orocos RTT Scripting Reference

64

may be given and an optional select (OTHER_STATE) statement may be given. The number
of arguments must match the number of arguments of the used event. The event is processed
as an asynchronous callback, thus in the thread or task of the StateMachine's processor.

Event transitions are enabled after the entry program and before the exit program (also in
automatic mode). All events are processed in a state until the first event that leads to a valid
state transition. In the mean time, the run program or handle programs may continue, but will
be interrupted if an event occurs. The event transition program and/or exit program may or
must thus perform the necessary cleanup.

5.5. Instantiating Machines: SubMachines and
RootMachines

As mentioned before: you can look at a SubMachine definition as the definition of a C++
class. It is merely the template for its instantiations, and you have to instantiate it to actually
be able to do anything with it. There is also a mechanism for passing parameter values to the
StateMachines on instantiation.

Note that you always need to write the instantiation after the definition of the StateMachine
you're instantiating.

5.5.1. Root Machines

A Root Machine is a normal instantiation of a StateMachine, one that does not depend on a
parent StateMachine (see below). They are defined as follows:

 StateMachine SomeStateMachine
 {
 initial state initState
 {
 // ...
 }
 final state finalState
 {
 // ...
 }
 }

 RootMachine SomeStateMachine someSMinstance

This makes an instantiation of the StateMachine type SomeStateMachine by the name of
'someSMinstance', which can then be accessed from other scripts (by that name).

5.5.2. Parameters and public variables

StateMachine public variables

You can define variables at the StateMachine level. These variables are then accessible to
the StateMachine methods (entry, handle, exit), the preconditions, the transitions and (in the
case of a SubMachine, see below) the parent Machine.

You can define a StateMachine public variable as follows:

 StateMachine SomeStateMachine
 {
 // a public constant

Orocos RTT Scripting Reference

65

 const double pi = 3.1415926535897
 var int counter = 0

 initial state initState
 {
 handle
 {
 // change the value of counter...
 counter = counter + 1
 }
 // ...
 }
 final state finalState
 {
 entry
 {
 someTask.doSomethingWithThisCounter(counter)
 }
 // ...
 }
 }

 Rootmachine SomeStateMachine mymachine

This example creates some handy public variables in the StateMachine SomeStateMachine,
and uses them throughout the state machine. They can also be read and modified from other
tasks or programs :

 var int readcounter = 0
 readcounter = taskname.mymachine.counter

 taskname.mymachine.counter = taskname.mymachine.counter * 2

StateMachine parameters

A StateMachine can have parameters that need to be set on its instantiation. Here's an ex-
ample:

 StateMachine AxisController
 {
 // a parameter specifying which axis this Controller controls
 param int axisNumber
 initial state init
 {
 entry
 {
 var double power = someTask.getPowerForAxis(axisNumber)
 // do something with it...
 }
 }
 }

 RootMachine AxisController axiscontroller1(axisNumber = 1)
 RootMachine AxisController axiscontroller2(axisNumber = 2)
 RootMachine AxisController axiscontroller3(axisNumber = 3)
 RootMachine AxisController axiscontroller4(axisNumber = 4)
 RootMachine AxisController axiscontroller5(axisNumber = 5)
 RootMachine AxisController axiscontroller6(axisNumber = 6)

Orocos RTT Scripting Reference

66

This example creates an AxisController StateMachine with one integer parameter called
axisNumber. When the StateMachine is instantiated, values for all of the parameters
need to be given in the form "oneParamName= 'some value', anotherParamName = 0,
yetAnotherParamName=some_other_expression + 5". Values need to be provided for all the
parameters of the StateMachine. As you see, a StateMachine can of course be instantiated
multiple times with different parameter values.

5.5.3. Building Hierarchies : SubMachines

A SubMachine is a StateMachine that is instantiated within another StateMachine (which
we'll call the parent StateMachine). The parent StateMachine is owner of its child, and can
decide when it needs to be started and stopped, by invoking the respective methods on its
child.

Instantiating SubMachines

An instantiation of a SubMachine is written as follows:

 StateMachine ChildStateMachine
 {
 initial state initState
 {
 // ...
 }
 final state finalState
 {
 // ...
 }
 }

 StateMachine ParentStateMachine
 {
 SubMachine ChildStateMachine child1
 SubMachine ChildStateMachine child2
 initial state initState
 {
 entry
 {
 // enter initial state :
 child1.activate()
 child2.activate()
 }
 exit
 {
 // enter final state :
 child2.stop()
 }
 }

 final state finalState
 {
 entry
 {
 // enter final state :
 child1.stop()
 }

Orocos RTT Scripting Reference

67

 }
 }

Here you see a ParentStateMachine which has two ChildStateMachines. One of them is start-
ed in the initial state's entry method and stopped in its exit method. The other one is started
in the initial state's entry method and stopped in the final state's entry method.

SubMachine manipulating

In addition to starting and stopping a SubMachine, a parent StateMachine can also inspect
its public variables, change its parameters, and check what state it is in...

Inspecting StateMachine public variables is simply done using the syntax
"someSubMachineInstName.someValue", just as you would do if someSubMachineInst-
Name were an Orocos task. Like this, you can inspect all of a subcontext's public variables.

Setting a StateMachine parameter must be done at its instantiation. However, you
can still change the values of the parameters afterwards. The syntax is: "set
someSubMachine.someParam = someExpression". Here's an elaborate example:

 StateMachine ChildStateMachine
 {
 param int someValue
 const double pi = 3.1415926535897
 initial state initState
 {
 // ...
 }
 final state finalState
 {
 // ...
 }
 }

 StateMachine ParentStateMachine
 {
 SubMachine ChildStateMachine child1(someValue = 0)
 SubMachine ChildStateMachine child2(someValue = 0)

 var int counter = 0
 initial state initState
 {
 entry
 {
 child1.start()
 child2.start()
 // set the subcontext's parameter
 child1.someValue = 2
 }
 run
 {
 counter = counter + 1
 // set the subcontext's parameters
 child2.someValue = counter
 // use the subcontext's public variables
 someTask.doSomethingCool(child1.someValue)
 }
 exit

Orocos RTT Scripting Reference

68

 {
 child2.stop()
 }
 }

 final state finalState
 {
 entry
 {
 child1.stop()
 }
 }
 }

You can also query if a child State Machine is in a certain state. The syntax looks like:

someSubMachine.inState("someStateName")

5.6. Starting and Stopping StateMachines from
scripts

Once a state machine is parsed and loaded into the State Machine Processor, it can be manip-
ulated from another script. This can be done through the "states" subtask of the TaskContext
in which the state machine was loaded. Assume that you loaded "machine" with subcontexts
"axisx" and "axisy" in task "ATask", you can write

 ATask.machine.activate()
 ATask.machine.axisx.activate()
 // now in reactive mode...

 ATask.machine.axisx.start()
 ATask.machine.start()
 // now in automatic mode...

 ATask.machine.stop()
 // again in reactive mode, in final state

 ATask.machine.reset()
 ATask.machine.deactivate()
 // deactivated.
 // etc.

The first line activates a root StateMachine, thus it enters the initial state and is put in reactive
mode , the next line actives its child, the next starts its child, then we start the parent, which
bring both in automatic mode. Then the parent is stopped again, reset back to its initial state
and finally deactivated.

Thus both RootMachines and SubMachines can be controlled. Some basic properties of the
states can be inspected likewise :

 var bool res = ATask.machine.isActive() // Active ?
 res = ATask.machine.axisy.isRunning() // Running ?
 res = ATask.machine.isReactive() // Waiting for requests or events?
 var string current = ATask.machine.getState() // Get current state
 res = ATask.machine.inState(current) // inState ?

which makes it possible to monitor state machines from other scripts or an operator console.

Orocos RTT Scripting Reference

69

5.6.1. On Reactive Mode Commands

Consider the following StateMachine :

 StateMachine X {
 // ...
 initial state y {
 entry {
 // ...
 }
 // guard this transition.
 transition if checkSomeCondition() then
 select z
 transition if checkOtherCondition() then
 select exit
 }
 state z {
 // ...
 // always good to go to state :
 transition select ok_1
 select ok_1
 }
 state ok_1 {
 // ...
 }
 final state exit {
 // ...
 }
 }

 RootMachine X x

A program interacting with this StateMachine can look like this :

 program interact {
 // First activate x :
 x.activate() // activate and wait.

 // Request a state transition :
 try x.requestState("z") catch {
 // failed !
 }

 // ok we are in "z" now, try to make a valid transition :
 x.step()

 // enter pause mode :
 x.pause()
 // Different ! Executes a single program statement :
 x.step()

 // unpause, by re-entering reactive Mode :
 x.reactive()

 // we are in ok_1 now, again waiting...
 x.stop() // go to the final state

 // we are in "exit" now

Orocos RTT Scripting Reference

70

 reset()

 // back in state "y", handle current state :
 this.x.requestState(this.x.getState())
 // etc.
 }

The requestState command will fail if the transition is not possible (for example, the state
machine is not in state y, or checkSomeCondition() was not true), otherwise, the state ma-
chine will make the transition and the command succeeds and completes when the z state is
fully entered (it's init program completed).

The next command, step(), lets the state machine decide which state to enter, and since a
transition to state "ok_1" is unconditionally, the "ok_1" state is entered. The stop() command
brings the State Machine to the final state ("exit"), while the reset command sends it to the
initial state ("y"). These transitions do not need to be specified explicitly, they are always
available.

The last command, is a bit cumbersome request to execute the handle program of the current
state.

At any time, the State Machine can be paused using pause(). The step() command changes to
execute a single program statement or transition evaluation, instead of a full state transition.

All these methods can of course also be called from parent to child State Machine, or across
tasks.

5.6.2. Automatic Mode Commands

Consider the following StateMachine, as in the previous section :

 StateMachine X {
 // ...
 initial state y {
 entry {
 // ...
 }
 // guard this transition.
 transition if checkSomeCondition() then
 select z
 transition if checkOtherCondition() then
 select exit
 }
 state z {
 // ...
 // always good to go to state :
 transition select ok_1
 }
 state ok_1 {
 // ...
 }
 final state exit {
 // ...
 }
 }

 RootMachine X x

Orocos RTT Scripting Reference

71

A program interacting with this StateMachine can look like this :

 program interact {
 // First activate x :
 x.activate() // activate and wait.

 // Enter automatic mode :
 x.start()

 // pause program execution :
 x.pause()

 // execute a single statement :
 x.step()

 // resume automatic mode again :
 x.start()

 // stop, enter final state, in request mode again.
 x.stop()

 // etc...
 }

After the State Machine is activated, it is started, which lets the State Machine enter automatic
mode. If checkSomeCondition() evaluates to true, the State Machine will make the transition
to state "z" without user intervention, if checkOtherCondition() evaluates to true, the "exit"
state will be entered.

When running, the State Machine can be paused at any time using pause(), and a single
program statement (a single line) or single transition evaluation can be executed with calling
step(). Automatic mode can be resumed by calling start() again.

To enter the reactive mode when the State Machine is in automatic mode, one can call the
reactive() command, which will finish the program or transition the State Machine is making
and will complete if the State Machine is ready for requests.

All these methods can of course also be called from parent to child State Machine, or across
tasks.

6. Program and State Example
This sections shows the listings of an Orocos State Description and an Orocos Program Script.
They are fictitious examples (but with valid syntax) which may differ from actual available
tasks. The example tries to exploit most common functions.

Example 3.3. StateMachine Example (state.osd)

The Example below shows a state machine for controlling 6 axes.

 StateMachine Simple_nAxes_Test
 {

 var bool calibrate_offsets = true
 var bool move_to = true
 var bool stop = true

Orocos RTT Scripting Reference

72

 const double pi = 3.14159265358979
 var array pos = array(6,0.0)

 initial state StartRobotState {
 entry {
 Robot.prepareForUse()
 }
 exit {
 Robot.unlockAllAxes()
 Robot.startAllAxes()
 }
 transitions {
 select CalibrateOffsetsState
 }
 }

 state CalibrateOffsetsState {
 preconditions {
 if (calibrate_offsets == false) then
 select MoveToState
 }
 entry {
 nAxesGeneratorPos.start()
 nAxesControllerPos.start()
 //Reporter.start()
 CalibrateOffsetsProg.start()
 }
 exit {
 nAxesGeneratorPos.stop()
 nAxesControllerPos.stop()
 }
 transitions {
 if !CalibrateOffsetsProg.isRunning then
 select MoveToState
 }
 }

 state MoveToState {
 preconditions {
 if (move_to == false) then
 select StopRobotState
 }
 entry {
 nAxesGeneratorPos.start()
 nAxesControllerPosVel.start()
 pos = array(6,0.0)
 nAxesGeneratorPos.moveTo(pos,0.0)
 pos[0]=-pi/2.0
 pos[1]=-pi/2.0
 pos[2]=pi/2.0
 pos[4]=-pi/2.0
 nAxesGeneratorPos.moveTo(pos,0.0)
 }
 exit {

Orocos RTT Scripting Reference

73

 nAxesControllerPosVel.stop()
 nAxesGeneratorPos.stop()
 //Reporter.stop()
 }
 transitions {
 if(stop == true) then
 select StopRobotState
 }
 }

 final state StopRobotState {
 entry {
 Robot.stopAllAxes()
 Robot.lockAllAxes()
 }
 exit {
 Robot.prepareForShutdown()
 }
 }
 }
 RootMachine Simple_nAxes_Test SimpleMoveTo

Example 3.4. Program example (program.ops)

Below is a program script example.

 /**
 * This program is executed in the exec_state.
 */

 /**
 * Request the HMI to load the user selected
 * trajectory into the kernel.
 */
 export function HMILoadTrajectory() {
 // request a 'push' of the next
 // trajectory :
 HMI.requestTrajectory()
 // when the HMI is done :
 Generator.loadTrajectory()
 }

 /**
 * a Homing (reset) of the axes.
 * This could also be done using a Homing state,
 * without a program.
 */
 export function ResetAxes() {
 HomingGenerator.start()
 HomingGenerator.homeAll()
 }

 export function ResetAxis(int nr) {
 HomingGenerator.start()
 HomingGenerator.homeAxis(nr)
 }

Orocos RTT Scripting Reference

74

 /**
 * Request the Generator to use the current
 * trajectory.
 */
 function runTrajectory() {
 Generator.startTrajectory()
 // this function returns when the
 // trajectory is done.
 }

 program DemoRun {
 HMI.display("Program Started\n")
 var int cycle = 0

 // We actually wait here until a
 // Trajectory is present in the HMI.
 while (!HMI.trajectoryPresent())
 yield;

 while HMI.cycle() {
 HMI.display("Cycle nr: %d.\n", cycle)
 ResetAxes()
 HMIRequestTrajectory()
 runTrajectory()

 Timer.sleep(5.0) // wait 5s
 }

 HMI.display("Program Ended\n")
 }

75

Chapter 4. Distributing Orocos
Components with CORBA

This document explains the principles of the Corba Transport of Orocos, the Open RObot COntrol
Software project. It enables transparant deployment accross networked nodes of plain Orocos C++ com-
ponents.

1. The CORBA Transport
This transport allows Orocos components to live in separate processes, distributed over a
network and still communicate with each other. The underlying middleware is CORBA, but
no CORBA knowledge is required to distribute Orocos components.

The Corba transport provides:

• Connection and communication of Orocos components over a network or between two
processes on the same computer.

• Clients (like visualisation) making a connection to any running Orocos component using
the IDL interface.

• Transparant use: no recompilation of existing components required. The library acts as a
run-time plugin.

2. Setup CORBA Naming (Required!)
Important

Follow these instructions carefully or your setup will not work !

In order to distribute Orocos components over a network, your computers must be setup
correctly for using Corba. Start a Corba Naming Service once with multicasting on. Using
the TAO Naming Service, this would be:

 $ Naming_Service -m 1 &

And your application as:

 $ deployer-corba-gnulinux

OR: if that fails, start the Naming Service with the following options set:

 $ Naming_Service -m 0 -ORBListenEndpoints iiop://<the-ns-ip-address>:2809 -ORBDaemon

The <the-ns-ip-address> must be replaced with the ip address of a network interface of
the computer where you start the Naming Service. And each computer where your start the
application:

 $ export NameServiceIOR=corbaloc:iiop:<the-ns-ip-address>:2809/NameService
 $ deployer-corba-gnlinux

With <the-ns-ip-address> the same as above.

Distributing Orocos Components with CORBA

76

For more detailed information or if your deployer does not find the Naming Service, take
a look at this page: Using CORBA [http://www.orocos.org/wiki/rtt/frequently-asked-ques-
tions-faq/using-corba]

3. Connecting CORBA components
Normally, the Orocos deployer will create connections for you between CORBA compo-
nents. Be sure to read the OCL DeploymentComponent Manual [http://www.orocos.org/sta-
ble/documentation/ocl/v2.x/doc-xml/orocos-deployment.html] for detailed instructions on
how you can setup components such that the can be used from another process.

This is an example deployment script 'server-script.ops' for creating your first process and
making one component available in the network:

 import("ocl") // make sure ocl is loaded

 loadComponent("MyComponent","TaskContext") // Create a new default TaskContext
 server("MyComponent",true) // make MyComponent a CORBA server, and
 // register it with the Naming Service ('true')

You can start this application with:

$ deployer-corba-gnulinux -s server-script.ops

In another console, start a client program 'client-script.ops' that wishes to use this component:

 import("ocl") // make sure ocl is loaded

 loadComponent("MyComponent","CORBA") // make 'MyComponent' available in this
 program
 MyComponent.start() // Use the component as usual...connect ports etc.

You can start this application with:

$ deployer-corba-gnulinux -s client-script.ops

More CORBA deployment options are described in the OCL Deployment-
Component Manual [http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/oro-
cos-deployment.html].

4. In-depth information
You don't need this information unless you want to talk to the CORBA layer directly, for
example, from a non-Orocos GUI application.

4.1. Status
The Corba transport aims to make the whole Orocos Component interface available over
the network. Consult the Component Builder's Manual for an overview of a Component's
interface.

These Component interfaces are available:

http://www.orocos.org/wiki/rtt/frequently-asked-questions-faq/using-corba
http://www.orocos.org/wiki/rtt/frequently-asked-questions-faq/using-corba
http://www.orocos.org/wiki/rtt/frequently-asked-questions-faq/using-corba
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html
http://www.orocos.org/stable/documentation/ocl/v2.x/doc-xml/orocos-deployment.html

Distributing Orocos Components with CORBA

77

• TaskContext interface: fully (TaskContext.idl)

• Properties/Attributes interface: fully (ConfigurationInterface.idl)

• OperationCaller/Operation interface: fully (OperationInterface.idl)

• Service interface: fully (Service.idl, ServiceRequester.idl)

• Data Flow interface: fully (DataFlow.idl)

4.2. Limitations
The following limitations apply:

• You need the typegen command from the 'orogen' package in order to communicate cus-
tom structs/data types between components.

• Interacting with a remote component using the CORBA transport will never be real-time.
The only exception to this rule is when using the data flow transport: reading and writing
data ports is always real-time, the transport of the data itself is not a real-time process.

5. Code Examples
Note

You only need this example code if you don't use the deployer application!

This example assumes that you have taken a look at the 'Component Builder's Manual'. It
creates a simple 'Hello World' component and makes it available to the network. Another
program connects to that component and starts the component interface browser in order to
control the 'Hello World' component. Both programs may be run on the same or on different
computers, given that a network connection exists.

In order to setup your component to be available to other components transparantly, proceed
as:

 // server.cpp
 #include <rtt/transports/corba/TaskContextServer.hpp>

 #include <rtt/Activity.hpp>
 #include <rtt/TaskContext.hpp>
 #include <rtt/os/main.h>

 using namespace RTT;
 using namespace RTT::corba;

 int ORO_main(int argc, char** argv)
 {
 // Setup a component
 TaskContext mycomponent("HelloWorld");
 // Execute a component
 mycomponent.setActivity(new Activity(1, 0.01);
 mycomponent.start();

 // Setup Corba and Export:
 corba::TaskContextServer::InitOrb(argc, argv);

Distributing Orocos Components with CORBA

78

 TaskContextServer::Create(&mycomponent);

 // Wait for requests:
 TaskContextServer::RunOrb();

 // Cleanup Corba:
 TaskContextServer::DestroyOrb();
 return 0;
 }

Next, in order to connect to your component, you need to create a 'proxy' in another file:

 // client.cpp
 #include <rtt/transports/corba/TaskContextServer.hpp>
 #include <rtt/transports/corba/TaskContextProxy.hpp>

 #include <ocl/TaskBrowser.hpp>
 #include <rtt/os/main.h>

 using namespace RTT::corba;
 using namespace RTT;

 int ORO_main(int argc, char** argv)
 {
 // Setup Corba:
 corba::TaskContextServer::InitOrb(argc, argv);

 // Setup a thread to handle call-backs to our components.
 corba::TaskContextServer::ThreadOrb();

 // Get a pointer to the component above
 TaskContext* component = TaskContextProxy::Create("HelloWorld");

 // Interface it:
 TaskBrowser browse(component);
 browse.loop();

 // Stop ORB thread:
 corba::TaskContextServer::ShutdownOrb();
 // Cleanup Corba:
 TaskContextServer::DestroyOrb();
 return 0;
 }

Both examples can be found in the corba-example package on Orocos.org. You may use
'connectPeers' and the related methods to form component networks. Any Orocos component
can be 'transformed' in this way.

6. Timing and time-outs
By default, a remote method invocation waits until the remote end completes and returns the
call, or an exception is thrown. In case the caller only wishes to spend a limited amount of
time for waiting, the TAO Messaging service can be used. OmniORB to date does not support
this service. TAO allows timeouts to be specified on ORB level, object (POA) level and
method level. Orocos currently only supports ORB level, but if necessary, you can apply the
configuration yourself to methods or objects by accessing the 'server()' method and casting
to the correct CORBA object type.

Distributing Orocos Components with CORBA

79

In order to provide the ORB-wide timeout value in seconds, use:

 // Wait no more than 0.1 seconds for a response.
 ApplicationSetup::InitORB(argc, argv, 0.1);

TaskContextProxy and TaskContextServer inherit from ApplicationSetup, so you might as
well use these classes to scope InitORB.

7. Orocos Corba Interfaces
Orocos does not require IDL or CORBA knowledge of the user when two Orocos components
communicate. However, if you want to access an Orocos component from a non-Orocos
program (like a MSWindows GUI), you need to use the IDL files of Orocos.

The relevant files are:

• TaskContext.idl: The main Component Interface file, providing CORBA access to a
TaskContext.

• Service.idl: The interface of services by a component

• ServiceRequester.idl: The interface of required services by a component

• OperationInterface.idl: The interface for calling or sending operations.

• ConfigurationInterface.idl: The interface for attributes and properties.

• DataFlow.idl: The interface for communicating buffered or unbufferd data.

All data is communicated with CORBA::Any types. The way of using these interfaces is very
similar to using Orocos in C++, but using CORBA syntax.

8. The Naming Service
Orocos uses the CORBA Naming Service such that components can find each other on the
same or different networked stations. See also Using CORBA [http://www.orocos.org/wi-
ki/rtt/frequently-asked-questions-faq/using-corba] for a detailed overview on using this pro-
gram in various network environments or for troubleshooting.

The components are registered under the naming context path "TaskContexts/Component-
Name" (id fields). The kind fields are left empty. Only the components which were explicitly
exported in your code, using corba::TaskContextServer, are added to the Naming Service.
Others write their address as an IOR to a file "ComponentName.ior", but you can 'browse'
to other components using the exported name and then using 'getPeer()' to access its peer
components.

8.1. Example
Since the multicast service of the CORBA Naming_Server behaves very unpredictable (see
this link [http://www.theaceorb.com/faq/index.html#115]), you shouldn't use it. Instead, it is
better started via some extra lines in /etc/rc.local:

http://www.orocos.org/wiki/rtt/frequently-asked-questions-faq/using-corba
http://www.orocos.org/wiki/rtt/frequently-asked-questions-faq/using-corba
http://www.orocos.org/wiki/rtt/frequently-asked-questions-faq/using-corba
http://www.theaceorb.com/faq/index.html#115
http://www.theaceorb.com/faq/index.html#115

Distributing Orocos Components with CORBA

80

 ##
 # Start CORBA Naming Service
 echo Starting CORBA Naming Service
 pidof Naming_Service || Naming_Service -m 0 -ORBListenEndpoints iiop://192.168.246.151:2809
 -ORBDaemon

 ##

Where 192.168.246.151 should of course be replaced by your ip adres (using a hostname
may yield trouble due to the new 127.0.1.1 entries in /etc/hosts, we think).

All clients (i.e. both your application and the ktaskbrowser) wishing to connect to the
Naming_Service should use the environment variable NameServiceIOR

 [user@host ~]$ echo $NameServiceIOR
 corbaloc:iiop:192.168.246.151:2809/NameService

You can set it f.i. in your .bashrc file or on the command line via

 export NameServiceIOR=corbaloc:iiop:192.168.246.151:2809/NameService

See the orocos website for more information on compiling/running the ktaskbrowser.

81

Chapter 5. Real-time Inter-
Process Data Flow using MQueue

This document explains the principles of the MQueue Library of Orocos, the Open RObot COntrol
Software project. It enables real-time communication between processes on the same node.

1. Overview
This transport allows to do inter-process communication between Orocos processes on the
same node. It uses the POSIX messages queues where available. This includes GNU/Linux
systems and Xenomai.

The MQueue transport provides:

• Connection and Communication of Orocos data flow streams between processes

• The ability to set these up using C++ syntax.

• The ability to set these up using the Corba transport by creating the MQueue as an 'Out-
Of-Band' transport.

1.1. Status
As of this writing, MQueues only transport data flow as streams.

1.2. Requirements and Setup
You must enable the ENABLE_MQUEUE flag in CMake. This will, depending on your
target, try to detect your mqueue.h header file and library. MQueue also requires the
boost::serialization library.

Only Gnu/Linux and Xenomai installations which provide this header can be used.

The transport must get to know your data type. There are two options. If your data type is
only Plain Old Data (POD), meaning, it does not contain any pointers or dynamically sized
objects, the transport can byte-copy your data. If your data type is more complex, it must
use the boost::serialization library to transport your type and your type must be known to
this framework.

See below on how to do this.

2. Transporting user types.
Be sure to read the 'Writing Plugins' manual such that your data type is already known to the
RTT framework. This section extends that work to make the known data type transportable
over MQueues.

2.1. Transporting 'simple' data types
Simple data types without pointers or dynamically sized objects, can be transported quite
easily. They are added as such:

Real-time Inter-Process Data Flow using MQueue

82

 // myapp.cpp
 #include <rtt/types/TemplateTypeInfo.hpp>
 #include <rtt/transports/mqueue/MQTemplateProtocol.hpp>

 using namespace RTT;
 using namespace RTT::mqueue;
 using namespace RTT::types;

 struct MyData {
 double x,y,x;
 int stamp;
 };

 int ORO_main(int argc, char** argv)
 {

 // Add your type to the Orocos type system (see: Writing plugins)
 Types()->addType(new types::TemplateTypeInfo<MyData, false>("MyData"));

 // New: Install the template protocol for your data type.
 Types()->getType("MyData")->addTransport(ORO_MQUEUE_PROTOCOL_ID, new
 mqueue::MQTemplateProtocol<MyData>());

 // rest of your program can now transport MyData between processes.

 }

As the code shows, only one line of code is necessary to register simple types to this transport.

In practice, you'll want to write a plugin which contains this code such that your data type is
loaded in every Orocos application that you start.

2.2. Transporting 'complex' data types
Data types like std::vector or similar can't just be byte-copied. They need special treatment for
reading and writing their contents. Orocos uses the boost::serialization library for this. This
library already understands the standard containers (vector,list,...) and is easily extendable to
learn your types. Adding complex data goes as such:

 // myapp.cpp
 #include <rtt/types/TemplateTypeInfo.hpp>
 #include <rtt/transports/mqueue/MQSerializationProtocol.hpp>

 using namespace RTT;
 using namespace RTT::mqueue;
 using namespace RTT::types;

 struct MyComplexData {
 double x,y,x;
 std::vector<int> stamps;
 MyComplexData() { stamps.resize(10, -1); }
 };

 // New: define the marshalling using boost::serialization syntax:
 namespace boost {
 namespace serialization {

 template<class Archive>

Real-time Inter-Process Data Flow using MQueue

83

 void serialize(Archive & ar, MyComplexData & d, const unsigned int version)
 {
 ar & d.x;
 ar & d.y;
 ar & d.z;
 ar & d.samps; // boost knows std::vector !
 }
 }
 }

 int ORO_main(int argc, char** argv)
 {

 // Add your type to the Orocos type system (see: Writing plugins). Same as simple case.
 Types()->addType(new types::TemplateTypeInfo<MyComplexData,
 false>("MyComplexData"));

 // New: Install the Serialization template protocol for your data type.
 Types()->getType("MyComplexData")->addTransport(ORO_MQUEUE_PROTOCOL_ID, new
 mqueue::MQSerializationProtocol<MyComplexData>());

 // rest of your program can now transport MyComplexData between processes.

 }

When comparing this to the previous section, only two things changed: We defined a seri-
alize() function, and used the MQSerializationProtocol instead of the MQTemplateProtocol
to register our data transport. You can find a tutorial on writing your own serialization func-
tion on: The Boost Serialization Website [http://www.boost.org/doc/libs/1_40_0/libs/serial-
ization/doc/index.html].

3. Connecting ports using the MQueue
transport

Orocos will not try to use this transport by default when connecting data flow ports. You
must tell it explicitly to do so. This is done using the ConnPolicy object, which describes
how connections should be made.

In addition to filling in this object, you need to setup an outgoing data stream on the output
port, and an incomming data stream at the input port which you wish to connect. This can be
done in C++ with or without the help from the CORBA transport.

3.1. Bare C++ connection
If you don't want to use CORBA for setting up a connection, you need to use the createStream
function to setup a data flow stream in each process. This requires you to choose a name of
the connection and use this name in both processes:

// process1.cpp:

 // Your port is probably created in a component:
 OutputPort<MyData> p_out("name");

 // Create a ConnPolicy object:
 ConnPolicy policy = buffer(10); // buffered connection with 10 elements.

http://www.boost.org/doc/libs/1_40_0/libs/serialization/doc/index.html
http://www.boost.org/doc/libs/1_40_0/libs/serialization/doc/index.html
http://www.boost.org/doc/libs/1_40_0/libs/serialization/doc/index.html

Real-time Inter-Process Data Flow using MQueue

84

 policy.transport = ORO_MQUEUE_PROTOCOL_ID; // the MQueue protocol id
 policy.name_id = "mydata_conn"; // the connection id

 p_out.createStream(policy);
 // done in proces1.cpp

// process2.cpp:

 // Your port is probably created in a component:
 InputPort<MyData> p_in("indata");

 // Create a ConnPolicy object:
 ConnPolicy policy = ConnPolicy::buffer(10); // buffered connection with 10 elements.
 policy.transport = ORO_MQUEUE_PROTOCOL_ID; // the MQueue protocol id
 policy.name_id = "mydata_conn"; // the connection id

 p_in.createStream(policy);
 // done in proces2.cpp . We can now transmit data from process1 to
 // process2 .

Both ends must specify the same connection policy. Also, the RTT assumes that the cre-
ateStream is first done on the output side, and then on the input side. This is because it is an
error to connect an input side without an output side producing data. When an output side
opens a connection, it will send in a test data sample, which will notify the input side that
someone is sending, and that the connection is probably correctly set up.

If either output or input would disapear after the connection has been setup (because their
process crashed or did not clean up), the other side will not notice this. You can re-start your
component, and the ports will find each other again.

If you want proper connection management, you need to use the CORBA approach below,
which keeps track of appearing and disappearing connections.

3.2. CORBA managed connections
The CORBA transport supports 'Out-Of-Band' (OOB) connections for data flow. This means
that CORBA itself is used to setup the connection between both ports, but the actual data
transfer is done using OOB protocol. In our case, CORBA will be used to setup or destroy
MQueue streams.

This has several advantages:

• Dead streams are cleaned up. CORBA can detect connection loss.

• You don't need to figure out a common connection name, the transport will find one for
you and CORBA will sync both sides.

• Creating out-of-band connections using the CORBA transport has the same syntax as cre-
ating normal connections.

• The CORBA transport will make sure that first your output stream is created and then your
input stream, and will cleanup the output stream if the input stream could not be created.

So it's more robust, but it requires the CORBA transport.

An Out-Of-Band connection is always setup like this:

Real-time Inter-Process Data Flow using MQueue

85

 TaskContext *task_a, *task_b;
 // init task_a, task_b...

 ConnPolicy policy = ConnPolicy::buffer(10);

 // override default transport policy to trigger out-of-band:
 policy.transport = ORO_MQUEUE_PROTOCOL_ID;

 // this is the standard way for connecting ports:
 task_a->ports()->getPort("name")->connectTo(task_b->ports()->getPort("outdata"), policy);

The important part here is that a policy.transport is set, while using the connectTo function
of base::PortInterface. Normally, setting the transport is not necessary, because the RTT will
figure out itself what the best means of transport is. For example, if both ports are in the same
process, a direct connection is made, if one or both components are proxies, the transport will
use the transport of the proxies, in our case CORBA. However, the transport flag overrides
this, and the connection logic will pick this up and use the specified transport.

Overriding the transport parameter even works when you want to test over-CORBA or over-
MQueue transport with using two process-local ports. The only thing to do is to set the trans-
port parameter to the protocol ID.

Finally, if you want to use the CORBA IDL interface to connect two ports over the mqueue
transport, the workflow is fairly identical. The code below is for C++, but the equivalent can
be done in any CORBA enabled language:

 #include <rtt/transports/corba/CorbaConnPolicy.hpp>
 // ...
 using namespace RTT::corba;

 CControlTask_var task_a, task_b;
 // init task_a, task_b...

 CConnPolicy cpolicy = toCORBA(RTT::ConnPolicy::buffer(10));

 // override default transport policy to trigger out-of-band:
 cpolicy.transport = ORO_MQUEUE_PROTOCOL_ID;

 // this is the standard way for connecting ports in CORBA:
 CDataFlowInterface_var dataflow_a = task_a->ports();
 CDataFlowInterface_var dataflow_b = task_b->ports();

 dataflow_a->createConnection("name", dataflow_b, "outdata", cpolicy);

Similar as connectTo above, the createConnection function creates a fully managed
connection between two data flow ports. We used the toCORBA function from
CorbaConnPolicy.hpp to convert RTT policy objects to CORBA policy objects. Both
RTT::ConnPolicy and RTT::corba::CConnPolicy structs are exactly the same, but RTT func-
tions require the former and CORBA functions the latter.

Alternatively, you can use the create streams functions directly from the CORBA interface,
in order to create unmanaged streams. In that case, the code becomes:

 #include <rtt/transports/corba/CorbaConnPolicy.hpp>
 // ...
 using namespace RTT::corba;

Real-time Inter-Process Data Flow using MQueue

86

 CControlTask_var task_a, task_b;
 // init task_a, task_b...

 CConnPolicy cpolicy = toCORBA(RTT::ConnPolicy::buffer(10));

 // override default transport policy and provide a name:
 cpolicy.transport = ORO_MQUEUE_PROTOCOL_ID;
 cpolicy.name_id = "stream_name";

 // this is the standard way for connecting ports in CORBA:
 CDataFlowInterface_var dataflow_a = task_a->ports();
 CDataFlowInterface_var dataflow_b = task_b->ports();

 dataflow_b->createStream("outdata", cpolicy);
 dataflow_a->createStream("name", cpolicy);

Note that creating message queues like this leaves out all management code and will not
detect broken connections. It has the same constraints as if the streams were setup in C++,
as shown in the previous section.

87

Chapter 6. Core Primitives Reference
This document explains the principles of the Core Library of Orocos, the Open RObot COntrol Software
project. The CoreLib provides infrastructural support for the functional and application components of
the Orocos framework.

1. Introduction
This Chapter describes the semantics of the services available as the Orocos Core Primitives

The Core Primitives are:

• Thread-safe C++ implementations for periodic, non periodic and event driven activities

• Synchronous/Asynchronous OperationCaller invocations

• Synchronous callback handling

• Property trees

• Time measurement

• Application logging framework

• Lock-free data exchange primitives such as FIFO buffers or shared data.

The goal of the infrastructure is to keep applications deterministic and
avoiding the classical pitfalls of letting application programmers freely use
threads and mutexes as bare tools.

The following sections will first introduce the reader to creating Activities, which execute
functions in a thread, in the system. Signals allow synchronous callback functions to be ex-
ecuted when other primitives are used. Operations are used to expose services.

2. Activities
An Activity executes a function when a 'trigger' occurs. Although, ultimately, an activity is
executed by a thread, it does not map one-to-one on a thread. A thread may execute ('serialise')
multiple activities. This section gives an introduction to defining periodic activities, which
are triggered periodically, non periodic activities, which are triggered by the user, and slave
activities, which are run when another activity executes.

2.1. Executing a Function Periodically
Note

When you use a TaskContext, the ExecutionEngine is the function to be executed
periodically and you don't need to write the classes below.

There are two ways to run a function in a periodically. By :

• Implementing the base::RunnableInterface in another class (functions initialize(), step()
or loop()/breakLoop() and finalize()). The RunnableInterface object (i.e. run_impl) can
be assigned to a activity using

Core Primitives Reference

88

 activity.run(
 &run_impl)

or at construction time of an Activity :

 Activity activity(priority,
 period, &run_impl);

.

 #include <rtt/RunnableInterface.hpp>
 #include <rtt/Activity.hpp>

 class MyPeriodicFunction
 : public base::RunnableInterface
 {
 public:
 // ...
 bool initialize() {
 // your init stuff
 myperiod = this->getActivity()->getPeriod();
 isperiodic = this->getActivity()->isPeriodic();

 // ...
 return true; // if all went well
 }

 // executed when isPeriodic() == true
 void step() {
 // periodic actions
 }

 // executed when isPeriodic() == false
 void loop() {
 // 'blocking' version of step(). Implement also breakLoop()
 }

 void finalize() {
 // cleanup
 }
 };

 // ...
 MyPeriodicFunction run_impl_1;
 MyPeriodicFunction run_impl_2;

 Activity activity(15, 0.01); // priority=15, period=100Hz
 activity.run(&run_impl_1);
 activity.start(); // calls 'step()'

 Activity npactivity(12); // priority=12, no period.
 npactivity.run(&run_impl_2);
 activity.start(); // calls 'loop()'

 // etc...

• Inheriting from an Activity class and overriding the initialize(), step() and finalize() meth-
ods.

Core Primitives Reference

89

 class MyOtherPeriodicFunction
 : public Activity
 {
 public :
 MyOtherPeriodicFunction()
 : Activity(15, 0.01) // priority=15, period=100Hz
 {
 }

 bool initialize() {
 // your init stuff
 double myperiod = this->getPeriod();
 // ...
 return true; // if all went well
 }

 void step() {
 // periodic actions
 }

 void finalize() {
 // cleanup
 }
 // ...
 };

 // When started, will call your step
 MyOtherPeriodicFunction activity;
 activity.start();

The Activity will detect if it must run an external RunnableInterface. If none was given, it
will call its own virtual methods.

2.2. Non Periodic Activity Semantics
If you want to create an activity which reads file-IO, or displays information or does any
other possibly blocking operation, the Activity implementation can be used with a period of
zero (0). When it is start()'ed, its loop() method will be called exactly once and then it will
wait, after which it can be start()'ed again. Analogous to a periodic Activity, the user can
implement initialize(), loop() and finalize() functions in a base::RunnableInterface which will
be used by the activity for executing the user's functions. Alternatively, you can reimplement
said functions in a derived class of Activity.

 int priority = 5;

 base::RunnableInterface* blocking_activity = ...
 Activity activity(priority, blocking_activity);
 activity.start(); // calls blocking_activity->initialize()

 // now blocking_activity->loop() is called in a thread with priority 5.
 // assume loop() finished...

 activity.start(); // executes again blocking_activity->loop()

 // calls blocking_activity->breakLoop() if loop() is still executing,
 // when loop() returned, calls blocking_activity->finalize() :
 activity.stop();

Core Primitives Reference

90

The Activity behaves differently when being non periodic in the way start() and stop() work.
Only the first invocation of start() will invoke initialize() and then loop() once. Any subse-
quent call to start() will cause loop() to be executed again (if it finished in the first place).

Since the user's loop() is allowed to block the user must reimplement the
RunnableInterface::breakLoop() function. This function must do whatever necessary to let
the user's loop() function return (mostly set a flag). It must return true on success, false if it
was unable to let the loop() function return (the latter is the default implementation's return
value). stop() then waits until loop() returns or aborts if breakLoop() returns false. When
successful, stop() executes the finalize() function.

2.3. Selecting the Scheduler

There are at least two scheduler types in RTT: The real-time scheduler, ORO_SCHED_RT,
and the not real-time scheduler, ORO_SCHED_OTHER. In some systems, both may map
to the same scheduler.

When a Activity, it runs in the default 'ORO_SCHED_OTHER' scheduler with the low-
est priority. You can specify another priority and scheduler type, by providing an extra
argument during construction. When a priority is specified, the Activity selects the the
ORO_SCHED_RT scheduler.

 // Equivalent to Activity my_act(OS::HighestPriority, 0.001) :
 Activity my_act(ORO_SCHED_RT, OS::HighestPriority, 0.001);

 // Run in the default scheduler (not real-time):
 Activity other_act (0.01);

2.4. Custom or Slave Activities

If none of the above activity schemes fit you, you can always fall back on the
extras::SlaveActivity, which lets the user control when the activity is executed. A special
function bool execute() is implemented which will execute RunnableInterface::step() or
RunnableInterface::loop() when called by the user. Three versions of the SlaveActivity can
be constructed:

 #include <rtt/SlaveActivity.hpp>

 // With master
 // a 'master', any ActivityInterface (even SlaveActivity):
 Activity master_one(9, 0.001);
 // a 'slave', takes over properties (period,...) of 'master_one':
 extras::SlaveActivity slave_one(&master_one);

 slave_one.start(); // fail: master not running.
 slave_one.execute(); // fail: slave not running.

 master_one.start(); // start the master.
 slave_one.start(); // ok: master is running.
 slave_one.execute(); // ok: calls step(), repeat...

 // Without master
 // a 'slave' without explicit master, with period of 1KHz.
 extras::SlaveActivity slave_two(0.001);

Core Primitives Reference

91

 // a 'slave' without explicit master, not periodic.
 extras::SlaveActivity slave_three;

 slave_two.start(); // ok: start periodic without master
 slave_two.execute(); // ok, calls 'step()', repeat...
 slave_two.stop();

 slave_three.start(); // start not periodic.
 slave_three.execute(); // ok, calls 'loop()', may block !
 // if loop() blocks, execute() blocks as well.

Note that although there may be a master, it is still the user's responsibility to get a pointer
to the slave and call execute().

There is also a trigger() function for slaves with a non periodic master. trigger() will in that
case call trigger() upon the master thread, which will cause it to execute. The master thread is
then still responsible to call execute() on the slave. In constrast, calling trigger() upon periodic
slaves or periodic activities will always fail. Periodic activities are triggered internally by
the elapse of time.

2.5. Configuring the Threads from Activities

Each Orocos Activity (periodic, non periodic and event driven) type has a thread() method in
its interface which gives a non-zero pointer to a os::ThreadInterface object which provides
general thread information such as the priority and periodicity and allows to control the re-
al-timeness of the thread which runs this activity. A non periodic activity's thread will return
a period of zero.

A base::RunnableInterface can get the same information through the this->getActivi-
ty()->thread() method calls.

Core Primitives Reference

92

Example 6.1. Example Periodic Thread Interaction

This example shows how to manipulate a thread.

#include "rtt/ActivityInterface.hpp"

using namespace RTT;

ORO_main(int argc, char** argv)
{
 // ... create any kind of Activity like above.

 base::ActivityInterface* act = ...

 // stop the thread and all its activities:
 act->thread()->stop();
 // change the period:
 act->thread()->setPeriod(0.01);

 // ORO_SCHED_RT: real-time ORO_SCHED_OTHER: not real-time.
 act->thread()->setScheduler(ORO_SCHED_RT);

 act->thread()->start();

 // act is running...

 return 0;
}

3. Signals
An internal::Signal is an object to which one can connect callback functions. When the Signal
is raised, the connected functions are called one after the other. An Signal can carry data and
deliver it to the function's arguments.

Any kind of function can be connected to the signal as long as it has the same signature as
the Signal. 'Raising', 'firing' or 'emitting' an Orocos Signal is done by using operator().

3.1. Signal Basics

Example 6.2. Using Signals

This example shows how a handler is connected to an Signal.

 #include <rtt/internal/Signal.hpp>

 using boost::bind;

 class SafetyStopRobot {
 public:
 void handle_now() {
 std::cout << " Putting the robot in a safe state fast !" << std::endl;
 }
 };

Core Primitives Reference

93

 SafetyStopRobot safety;

Now we will connect the handler function to a signal. Each event-handler connection is stored
in a Handle object, for later reference and connection management.

 // The <..> means the callback functions must be of type "void foo(void)"
 internal::Signal<void(void)> emergencyStop;
 // Use ready() to see if the event is initialised.
 assert(emergencyStop.ready());
 Handle emergencyHandle;
 Handle notifyHandle;

 // boost::bind is a way to connect the method of an object instance to
 // an event.
 std::cout << "Register appropriate handlers to the Emergency Stop Signal\n";
 emergencyHandle =
 emergencyStop.connect(bind(&SafetyStopRobot::handle_now, &safety));
 assert(emergencyHandle.connected());

Finally, we emit the event and see how the handler functions are called:

 std::cout << "Emit/Call the event\n";
 emergencyStop();

The program will output these messages:

 Register appropriate handlers to the Emergency Stop Signal
 Emit the event
 Putting the robot in a safe state fast !

If you want to find out how boost::bind works, see the Boost bind manual [http://
www.boost.org/libs/bind/bind.html]. You must use bind if you want to call C++ class mem-
ber functions to 'bind' the member function to an object :

 ClassName object;
 boost::bind(&ClassName::FunctionName, &object)

Where ClassName::FunctionName must have the same signature as the Signal. When the
Signal is called,

 object->FunctionName(args)

is executed by the Signal.

When you want to call free (C) functions, you do not need bind :

 Signal<void(void)> event;
 void foo() { ... }
 event.connect(&foo);

You must choose the type of internal::Signal upon construction. This can no longer be
changed once the internal::Signal is created. If the type changes, the event() method must
given other arguments. For example :

http://www.boost.org/libs/bind/bind.html
http://www.boost.org/libs/bind/bind.html
http://www.boost.org/libs/bind/bind.html

Core Primitives Reference

94

Example 6.3. Signal Types

 internal::Signal<void(void)> e_1;
 e_1();

 internal::Signal<void(int)> e_2;
 e_2(3);

 internal::Signal<void(double,double,double)> positionSignal;
 positionSignal(x, y, z);

Furthermore, you need to setup the connect call differently if the Signal carries one or more
arguments :

 SomeClass someclass;

 Signal<void(int, float)> event;

 // notice that for each Signal argument, you need to supply _1, _2, _3, etc...
 event.connect(boost::bind(&SomeClass::foo, someclass, _1, _2));

 event(1, 2.0);

Important

The return type of callbacks is ignored and can not be recovered.

3.2. setup() and the Handle object
Signal connections can be managed by using a Handle which both connect() and setup()
return :

 internal::Signal<void(int, float)> event;
 Handle eh;

 // store the connection in 'eh'
 eh = event.connect(...);
 assert(eh.connected());

 // disconnect the function(s) :
 eh.disconnect();
 assert(!eh.connected());

 // reconnect the function(s) :
 eh.connect();
 // connected again !

Handle objects can be copied and will all show the same status. To have a connection setup,
but not connected, one can write :

 internal::Signal<void(int, float)> event;
 Handle eh;

 // setup : store the connection in 'eh'
 eh = event.setup(...);
 assert(!eh.connected());

 // now connect the function(s) :

Core Primitives Reference

95

 eh.connect();
 assert(eh.connected()); // connected !

If you do not store the connection of setup(), the connection will never be established and no
memory is leaked. If you do not use 'eh' to connect and destroy this object, the connection
is also cleaned up. If you use 'eh' to connect and then destroy 'eh', you can never terminate
the connection, except by destroying the Signal itself.

4. Time Measurement and Conversion

4.1. The TimeService
The os::TimeService is implemented using the Singleton design pattern. You can query it for
the current (virtual) time in clock ticks or in seconds. The idea here is that it is responsible for
synchronising with other (distributed) cores, for doing, for example compliant motion with
two robots. This functionality is not yet implemented though.

When the extras::SimulationThread is used and started, it will change the TimeService's clock
with each period (to simulate time progress). Also other threads (!) In the system will notice
this change, but time is guaranteed to increase monotonously.

4.2. Usage Example
Also take a look at the interface documentation.

 #include <rtt/os/TimeService.hpp>
 #include <rtt/Time.hpp>

 TimeService::ticks timestamp = os::TimeService::Instance()->getTicks();
 //...

 Seconds elapsed = TimeService::Instance()->secondsSince(timestamp);

5. Attributes
Attributes are class members which contain a (constant) value. Orocos can manipulate a
classes attribute when it is wrapped in an Attribute class. This storage allows it to be read by
the scripting engine, to be displayed on screen or manipulated over a network connection.

The advantages of this class come clear when building Orocos Components, since it allows
a component to make internal data to its scripts.

Example 6.4. Creating attributes

 // an attribute, representing a double of value 1.0:
 Attribute<double> myAttr(1.0);
 myAttr.set(10.9);
 double a = myAttr.get();

 // read-only attribute:
 Constant<double> pi(3.14);
 double p = pi.get();

Core Primitives Reference

96

6. Properties
Properties are more powerful than attributes (above) since they can be stored to an XML
format, be hierarchically structured and allow complex configuration.

6.1. Introduction
Orocos provides configuration by properties through the Property class. They are used to
store primitive data (float, strings,...) in a hierarchies (using PropertyBag). A Property can
be changed by the user and has immediate effect on the behaviour of the program. Changing
parameters of an algorithm is a good example where properties can be used. Each parameter
has a value, a name and a description. The user can ask any PropertyBag for its contents and
change the values as they see fit. Java for example presents a Property API. The Doxygen
Property API should provide enough information for successfully using them in your Soft-
ware Component.

Note

Reading and writing a properties value can be done in real-time. Every other
transaction, like marshaling (writing to disk), demarshaling (reading from disk)
or building the property is not a real-time operation.

Example 6.5. Using properties

 // a property, representing a double of value 1.0:

 Property<double> myProp("Parameter A","A demo parameter", 1.0); // not real-
time !
 myProp = 10.9; // real-time
 double a = myProp.get(); // real-time

Properties are mainly used for two purposes. First, they allow an external entity to browse
their contents, as they can form hierarchies using PropertyBags. Second, they can be written
to screen, disk, or any kind of stream and their contents can be restored later on, for example
after a system restart. The next sections give a short introduction to these two usages.

6.2. Grouping Properties in a PropertyBag
First of all, a PropertyBag is not the owner of the properties it owns, it merely keeps track
of them, it defines a logical group of properties belonging together. Thus when you delete a
bag, the properties in it are not deleted, when you clone() a bag, the properties are not cloned
themselves. PropertyBag is thus a container of pointers to Property objects.

If you want to duplicate the contents of a PropertyBag or perform recursive operations on a
bag, you can use the helper functions we created and which are defined in PropertyBag.hpp
(see Doxygen documentation). These operations are however, most likely not real-time.

Note

When you want to put a PropertyBag into another PropertyBag, you need to
make a Property<PropertyBag> and insert that property into the first bag.

Core Primitives Reference

97

Use add to add Properties to a bag and getProperty(name) to mirror a Property<T>. Mirroring
allows you to change and read a property which is stored in a PropertyBag: the property
object's value acts like the original. The name and description are not mirrored, only copied
upon initialisation:

 PropertyBag bag;
 Property<double> w("Weight", "in kilograms", 70.5);
 Property<int> pc("PostalCode", "", 3462);

 struct BirthDate {
 BirthDate(int d, month m, int y) : day(d), month(m), year(y) {}
 int day;
 enum { jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec} month;
 int year;
 };

 Property<BirthDate> bd("BirthDate", " in 'BirthDate' format", BirthDate(1, apr, 1977));

 bag.add(&w);
 bag.add(&pc);
 bag.add(&bd);

 // setup mirrors:
 Property<double> weight = bag.getProperty("Weight");
 assert(weight.ready());

 // values are mirrored:
 assert(weight.get() == w.get());
 weight.set(90.3);
 assert(weight.get() == w.get());

 Property<BirthDate> bd_bis;
 assert(! bd_bis.ready());

 bd_bis = bag.getProperty("BirthDate");
 assert(bd_bis.ready());

 // descriptions and names are not mirrored:
 assert(bd_bis.getName() == bd.getName());
 bd_bis.setName("Date2");
 assert(bd_bis.getName() != bd.getName());

6.3. Marshalling and Demarshalling Properties
(Serialization)

Marshalling is converting a property C++ object to a format suitable for trans-
portation or storage, like XML. Demarshalling reconstructs the property again from
the stored format. In Orocos, the marsh::Marshaller interface defines how prop-
erties can be marshalled. The available marshallers (property to file) in Oro-
cos are the marsh::TinyMarshaller, marsh::XMLMarshaller, marsh::XMLRPCMarshaller,
marsh::INIMarshaller and the RTT::marsh::CPFMarshaller (only if Xerces is available).

The inverse operation (file to property) is currently supported by two demarshallers:
marsh::TinyDemarshaller and the RTT::marsh::CPFDemarshaller (only if Xerces is avail-
able). They implement the marsh::Demarshaller interface.

Core Primitives Reference

98

The (de-)marshallers know how to convert native C++ types, but if you want to store your
own classes in a Property (like BirthDate in the example above), the class must be added
to the Orocos type system.

In order to read/write portably (XML) files, use the marsh::PropertyMarshaller and
marsh::PropertyDemarshaller classes which use the default marshaller behind the scenes.

7. Extra Stuff

7.1. Buffers and DataObjects

The difference between Buffers and DataObjects is that DataObjects always contain a
single value, while buffers may be empty, full or contain a number of values. Thus a
internal::DataObject always returns the last value written (and a write always succeeds),
while a buffer may implement a FIFO queue to store all written values (and thus can get full).

7.1.1. Buffers

The base::BufferInterface<T> provides the interface for Orocos buffers. Currently the
base::BufferLockFree<T> is a typed buffer of type T and works as a FIFO queue for storing
elements of type T. It is lock-free, non blocking and read and writes happen in bounded time.
It is not subject to priority inversions.

Example 6.6. Accessing a Buffer

 #include <rtt/BufferLockFree.hpp>

 // A Buffer may also contain a class, instead of the simple
 // double in this example
 // A buffer with size 10:
 base::BufferLockFree<double> my_Buf(10);
 if (my_Buf.Push(3.14)) {
 // ok. not full.
 }
 double contents;
 if (my_Buf.Pop(contents)) {
 // ok. not empty.
 // contents == 3.14
 }

Both Push() and Pop() return a boolean to indicate failure or success.

7.1.2. DataObjects

The data inside the base::DataObjects can be any valid C++ type, so mostly people use classes
or structs, because these carry more semantics than just (vectors of) doubles. The default
constructor of the data is called when the DataObject is constructed. Here is an example of
creating and using a DataObject :

Core Primitives Reference

99

Example 6.7. Accessing a DataObject

 #include <rtt/DataObjectInterfaces.hpp>

 // A DataObject may also contain a class, instead of the simple
 // double in this example
 base::DataObjectLockFree<double> my_Do("MyData");
 my_Do.Set(3.14);
 double contents;
 my_Do.Get(contents); // contents == 3.14
 contents = my_Do.Get(); // equivalent

The virtual base::DataObjectInterface interface provides the Get() and Set() methods that
each DataObject must have. Semantically, Set() and Get() copy all contents of the DataOb-
ject.

8. Logging
Orocos applications can have pretty complex start-up and initialisation code. A logging
framework, using Logger helps to track what your program is doing.

Note

Logging can only be done in the non-real-time parts of your application, thus
not in the Real-time Periodic Activities !

There are currently 8 log levels :

Table 6.1. Logger Log Levels

ORO_LOGLEVEL Logger::enum Description

-1 na Completely disable logging

0 Logger::Never Never log anything (to con-
sole)

1 Logger::Fatal Only log Fatal errors. System
will abort immediately.

2 Logger::Critical Only log Critical or worse er-
rors. System may abort short-
ly after.

3 Logger::Error Only log Errors or worse er-
rors. System will come to a
safe stop.

4 Logger::Warning [Default] Only log Warnings
or worse errors. System will
try to resume anyway.

5 Logger::Info Only log Info or worse errors.
Informative messages.

6 Logger::Debug Only log Debug or worse er-
rors. Debug messages.

7 Logger::RealTime Log also messages from
possibly Real-Time con-

Core Primitives Reference

100

ORO_LOGLEVEL Logger::enum Description
texts. Needs to be con-
firmed by a function call to
Logger::allowRealTime().

You can change the amount of log info printed on your console by setting the environment
variable ORO_LOGLEVEL to one of the above numbers :

 export ORO_LOGLEVEL=5

The default is level 4, thus only warnings and errors are printed.

The minimum log level for the orocos.log file is Logger::Info. It will get more verbose if you
increase ORO_LOGLEVEL, but will not go below Info. This file is always created if the
logging infrastructure is used. You can inspect this file if you want to know the most useful
information of what is happening inside Orocos.

If you want to disable logging completely, use

export ORO_LOGLEVEL=-1

before you start your program.

For using the Logger class in your own application, consult the API documentation.

Example 6.8. Using the Logger class

 #include <rtt/Logger.hpp>

 Logger::In in("MyModule");
 log(Error) << "An error Occured : " << 333 << "." << endlog();
 log(Debug) << debugstring << data << endlog();
 log() << " more debug info." << data << endlog();
 log() << "A warning." << endlog(Warning);

As you can see, the Logger can be used like the standard C++ input streams. You may change
the Log message's level using the LogLevel enums in front (using log()) or at the end (using
endlog()) of the log message. When no log level is specified, the previously set level is used.
The above message could result in :

 0.123 [ERROR][MyModule] An error Occured : 333
 0.124 [Debug][MyModule] <contents of debugstring and data >
 0.125 [Debug][MyModule] more debug info. <...data...>
 0.125 [WARNING][MyModule] A warning.

101

Chapter 7. OS Abstraction Reference
This document gives a short overview of the philosophy and available classes for Operating System
(threads, mutexes, etc) interaction within Orocos

1. Introduction

1.1. Real-time OS Abstraction

The OS layer makes an abstraction of the operating system on which it runs. It provides C++
interfaces to only the minimal set of operating system primitives that it needs: time reading,
mutexes, semaphores, condition variables and threads. The abstraction also allows Orocos
users to build their software on all supported systems with only a recompilation step. The OS
Abstraction layer is not directly being used by the application writer.

The abstractions cause (almost) no execution overhead, because the wrappers can be called
in-line. See the OROBLD_OS_AGNOSTIC option in CMake build tool to control in-lining.

2. The Operating System Interface

2.1. Basics

Keeping the Orocos core portable requires an extra abstraction of some operating system
(OS) functionalities. For example, a thread can be created, started, paused, scheduled, etc.,
but each OS uses other function calls to do this. Orocos prefers C++ interfaces, which led
to the os::ThreadInterface which allows control and provides information about a thread in
Orocos.

Two thread classes are available in Orocos: os::Thread houses our thread implementation.
The os::MainThread is a special case as only one such object exists and represents the thread
that executes the main() function.

This drawing situates the Operating System abstraction with respect to device driver inter-
facing (DI) and the rest of Orocos

OS Abstraction Reference

102

Figure 7.1. OS Interface overview

3. OS directory Structure
The OS directory contains C++ classes to access Operating System functionality, like creat-
ing threads or signaling semaphores. Two kinds of subdirectories are used: the CPU architec-
ture (i386, powerpc, x86_64) and the Operating System (gnulinux, xenomai, lxrt), or target.

3.1. The RTAI/LXRT OS target
RTAI/LXRT is an environment that allows user programs to run with real-time determinism
next to the normal programs. The advantage is that the real-time application can use normal
system libraries for its functioning, like showing a graphical user interface.

An introduction to RTAI/LXRT can be found in the Porting to LXRT HOWTO [http://
people.mech.kuleuven.be/~psoetens/lxrt/portingtolxrt.html], which is a must-read if you
don't know what LXRT is.

The common rule when using LXRT is that any user space (GNU/Linux) library can be used
and any header included as long as their non-real-time functions are not called from within a
hard real-time thread. Specifically, this means that all the RTAI (and Orocos) OS functions,
but not the native Linux ones, may be called from within a hard real-time thread. Fortunately
these system calls can be done from a not hard real-time thread within the same program.

3.2. Porting Orocos to other Architectures / OSes
The OS directory is the only part of the Real-Time Toolkit that needs to be ported to other
Operating Systems or processor architectures in case the target supports Standard C++. The
os directory contains code common to all OSes. The oro_arch directories contain the archi-
tecture dependent headers (for example atomic counters and compare-and-swap).

In order to start your port, look at the fosi_interface.h and fosi_internal_interface.hpp files in
the os directory. These two files list the C/C++ function signatures of all to be ported functions
in order to support a new Operating System. The main categories are: time reading, mutexes,
semaphores and threads. The easiest way to port Orocos to another operating system, is to
copy the gnulinux directory into a new directory and start modifying the functions to match
those in your OS.

http://people.mech.kuleuven.be/~psoetens/lxrt/portingtolxrt.html
http://people.mech.kuleuven.be/~psoetens/lxrt/portingtolxrt.html
http://people.mech.kuleuven.be/~psoetens/lxrt/portingtolxrt.html

OS Abstraction Reference

103

3.3. OS Header Files
The following table gives a short overview of the available headers in the os directory.

Table 7.1. Header Files

Library Which file to include Remarks

OS functionality rtt/os/fosi.h

Include this file if you want
to make system calls to the
underlying operating system
(LXRT, GNU/Linux) .

OS Abstraction classes

Mutex.hpp, MutexLock.hpp,
Semaphore.hpp,

PeriodicThread.hpp,
SingleThread.hpp, main.h

The available C++ OS
primitives. main.h is re-
quired to be included in your
ORO_main() program file.

4. Using Threads and Real-time Execu-
tion of Your Program

4.1. Writing the Program main()
All tasks in the real-time system have to be performed by some thread. The OS abstraction
expects an int ORO_main(int argc, char** argv) function (which the user has written) and
will call that after all system initialisation has been done. Inside ORO_main() the user may
expect that the system is properly set up and can be used. The resulting orocos-rtt library will
contain the real main() function which will call the ORO_main() function.

Important

Do not forget to include <rtt/os/main.h> in the main program file, or the linker
will not find the ORO_main function.

Note

Using global objects (or static class members) which use the OS functions
before ORO_main() is entered (because they are constructed before main()),
can come into conflict with an uninitialised system. It is therefor advised not to
use static global objects which use the OS primitives. Events in the CoreLib are
an example of objects which should not be constructed as global static. You can
use dynamically created (i.e. created with new) global events instead.

4.2. The Orocos Thread

4.2.1. Threads

An Orocos thread by the os::Thread class. The most common operations are start(), stop()
and setting the periodicity. What is executed is defined in an user object which implements
the os::RunnableInterface. It contains three methods : initialize(), step() and finalize(). You

OS Abstraction Reference

104

can inherit from this interface to implement your own functionality. In initialize(), you put
the code that has to be executed once when the component is start()'ed. In step(), you put
the instructions that must be executed periodically. In finalize(), you put the instructions that
must be executed right after the last step() when the component is stop()'ed.

However, you are encouraged NOT to use the OS classes! The Core Primitives use these
classes as a basis to provide a more fundamental activity-based (as opposite to thread based)
execution mechanism which will insert your periodic activities in a periodic thread.

Common uses of periodic threads are :

• Running periodic control tasks.

• Fetching periodic progress reports.

• Running the CoreLib periodic tasks.

A special function is forseen when the Thread executes non periodically (ie getPeriod() ==
0): loop(), which is executed instead of step and in which it is allowed to not return (for a
long time).

The user himself is responsible for providing a mechanism to return from the loop() func-
tion. The Thread expects this mechanism to be implemented in the breakLoop() function,
which must return true if the loop() function could be signaled to return. Thread will call
breakLoop() in its stop() method if loop() is still being executed and, if successful, will wait
until loop() returns. The Thread::isRunning() function can be used to check if loop() is being
executed or not.

Note

The Activity provides a better integrated implementation for SingleThread and
should be favourably used.

Common uses of non periodic threads are :

• Listening for data on a network socket.

• Reading a file or files from hard-disk.

• Waiting for user input.

• Execute a lengthy calculation.

• React to asynchronous events.

4.2.2. Setting the Scheduler and Priorities.

The Orocos thread priorities are set during thread construction time and can be changed later
on with setPriority. Priorities are integer numbers which are passed directly to the underlying
OS. One can use priorities portably by using the os::LowestPriority, os::HighestPriority and
os::IncreasePriority variables which are defined for each OS.

OSes that support multiple schedulers can use the setScheduler function to influence the
scheduling policy of a given thread. Orocos guarantees that the ORO_SCHED_RT and

OS Abstraction Reference

105

ORO_SCHED_OTHER variables are defined and can be used portably. The former `hints'
a real-time scheduling policy, while the latter `hints' a not real-time scheduling policy. Each
OS may define additional variables which map more appropriately to its scheduler policies.
When only one scheduling policy is available, both variables map to the same scheduler.

4.2.3. ThreadScope: Oscilloscope Monitoring of Orocos
Threads

You can configure the OS layer at compilation time using CMake to report thread execution
as block-waves on the parallel port or any other digital output device. Monitoring through
the parallel port requires that a parallel port Device Driver is installed, and for Linux based
OSes, that you execute the Orocos program as root.

If the Logger is active, it will log the mapping of Threads to the device's output pins to the
orocos.log file. Just before step() is entered, the pin will be set high, and when step() is left,
the pin is set low again. From within any RTT activity function, you may then additionally
use the ThreadScope driver as such :

 DigitalOutInterface* pp = DigitalOutInterface::nameserver.getObject("ThreadScope");
if (pp)
 pp->setBit(this->getTask()->thread()->threadNumber(), value);

which sets the corresponding bit to a boolean value. The main thread claims pin zero, the
other pins are assigned incrementally as each new Orocos thread is created.

4.3. Synchronisation Primitives

Orocos OS only provides a few synchronisation primitives, mainly for guarding critical sec-
tions.

4.3.1. Mutexes

There are two kinds of Mutexes : os::Mutex and os::MutexRecursive. To lock a mutex, it has
a method lock(), to unlock, the method is unlock() and to try to lock, it is trylock(). A lock()
and trylock() on a recursive mutex from the same thread will always succeed, otherwise, it
blocks.

For ease of use, there is a os::MutexLock which gets a Mutex as argument in the constructor.
As long as the MutexLock object exists, the given Mutex is locked. This is called a scoped
lock.

OS Abstraction Reference

106

Example 7.1. Locking a Mutex

The first listing shows a complete lock over a function :

 os::Mutex m;
 void foo() {
 int i;
 os::MutexLock lock(m);
 // m is locked.
 // ...
 } // when leaving foo(), m is unlocked.

Any scope is valid, so if the critical section is smaller than the size of the function, you can :

 os::Mutex m;
 void bar() {
 int i;
 // non critical section
 {
 os::MutexLock lock(m);
 // m is locked.
 // critical section
 } // m is unlocked.
 // non critical section
 //...
 }

4.3.2. Signals and Semaphores

Orocos provides a C++ semaphore abstraction class os::Semaphore. It is used mainly for non
periodic, blocking tasks or threads. The higher level Event implementation in CoreLib can
be used for thread safe signalling and data exchange in periodic tasks.

 os::Semaphore sem(0); // initial value is zero.
 void foo() {
 // Wait on sem, decrement value (blocking):
 sem.wait()
 // awake : another thread did signal().

 // Signal sem, increment value (non blocking):
 sem.signal();

 // try wait on sem (non blocking):
 bool result = sem.trywait();
 if (result == false) {
 // sem.value() was zero
 } else {
 // sem.value() was non-zero and is now decremented.
 }
 }

4.3.3. Compare And Swap (CAS)

CAS is a fundamental building block of the CoreLib classes for inter-thread communication
and must be implemented for each OS target. See the Lock-Free sections of the CoreLib
manual for Orocos classes which use this primitive.

107

Chapter 8. Hardware
Device Interfaces

This document provides a short introduction to the Orocos Hardware Device Interface definitions. These
are a collection of classes making abstraction of interacting with hardware components.

1. The Orocos Device Interface (DI)
Designing portable software which should interact with hardware is very hard. Some efforts,
like Comedi [http://www.comedi.org] propose a generic interface to communicate with a
certain kind of hardware (mainly analog/digital IO). This allows us to change hardware and
still use the same code to communicate with it. Therefore, we aim at supporting every Come-
di supported card. We invite you to help us writing a C++ wrapper for this API and port
comedilib (which adds more functionality) to the real-time kernels.

We do not want to force people into using Comedi, and most of us have home written device
drivers. To allow total implementation independence, we are writing C++ device interfaces
which just defines which functionalities a generic device driver should implement. It is up to
the developers to wrap their C device driver into a class which implements this interface. You
can find an example of this in the devices package. This package only contains the interface
header files. Other packages should always point to these interface files and never to the real
drivers actually used. It is up to the application writer to decide which driver will actually
be used.

1.1. Structure

The Device Interface can be structured in two major parts : physical device interfaces and log-
ical device interfaces. Physical device interfaces can be subdivided in four basic interfaces:
AnalogInput, AnalogOutput, DigitalInput, DigitalOutput. Analog devices are addressed with
a channel as parameter and write a ranged value, while digital devices are addressed with a
bit number as parameter and a true/false value.

Logical device interfaces represent the entities humans like to work with: a drive, a sensor,
an encoder, etc. They put semantics on top of the physical interfaces they use underneath.
You just want to know the position of a positional encoder in radians for example. Often, the
physical layer is device dependent (and thus non-portable) while the logical layer is device
independent.

http://www.comedi.org
http://www.comedi.org

Hardware Device Interfaces

108

Figure 8.1. Device Interface Overview

1.2. Example
An example of the interactions between the logical and the physical layer is the logical en-
coder with its physical counting card. An encoder is a physical device keeping track of the
position of an axis of a robot or machine. The programmer wishes to use the encoder as a
sensor and just asks for the current position. Thus a logical encoder might choose to imple-
ment the SensorInterface which provides a read(DataType &) function. Upon construction
of the logical sensor, we supply the real device driver as a parameter. This device driver
implements for example AnalogInInterface which provides read(DataType & data, unsigned
int chan) and allows to read the position of a certain encoder of that particular card.

2. The Device Interface Classes
The most common used interfaces for machine control are already implemented and tested
on multiple setups. All the Device Interface classes reside in the RTT namespace.

2.1. Physical IO
There are several classes for representing different kinds of IO. Currently there are:

Table 8.1. Physical IO Classes

Interface Description

AnalogInInterface Reading analog input channels

AnalogOutInterface Writing analog output channels

Hardware Device Interfaces

109

Interface Description

DigitalInInterface Reading digital bits

DigitalOutInterface Writing digital bits

CounterInterface Not implemented yet

EncoderInterface A position/turn encoder

2.2. Logical Device Interfaces
From a logical point of view, the generic SensorInterface<T> is an easy to use abstraction
for reading any kind of data of type T.

You need to look in the Orocos Component Library for implementations of the Device In-
terface. Examples are Axis and AnalogDrive.

3. Porting Device Drivers to Device Inter-
faces

The methods in each interface are well documented and porting existing drivers (which most-
ly have a C API) to these should be quite straight forward. It is the intention that the devel-
oper writes a class that inherits from one or more interfaces and implements the correspond-
ing methods. Logical Devices can then use these implementations to provide higher level
functionalities.

4. Interface Name Serving
Name Serving is introduced in the Orocos CoreLib documentation.

The Device Interface provides name serving on interface level. This means that one can
ask a certain interface by which objects it is implemented and retrieve the desired instance.
No type-casting whatsoever is needed for this operation. For now, only the physical device
layer can be queried for entities, since logical device drivers are typically instantiated where
needed, given an earlier loaded physical device driver.

Example 8.1, “Using the name service” shows how one could query the DigitalOutInterface.

Example 8.1. Using the name service

 FancyCard* fc = new FancyCard("CardName"); // FancyCard implements DigitalOutInterface

 // Elsewhere in your program:
 bool value = true;
 DigitalOutInterface* card = DigitalOutInterface::nameserver.getObject("CardName");
 if (card)
 card->setBit(0, value); // Set output bit to 'true'.

	The Orocos Component Builder's Manual
	Table of Contents
	Chapter 1. How to Read this Manual
	1. Component Interfaces
	2. Component Implementation
	3. Orocos Toolchain Overview

	Chapter 2. Setting up the Component Interface
	1. Introduction
	2. Hello World !
	2.1. Using the Deployer
	2.2. Starting your First Application
	2.3. Displaying a TaskContext
	2.4. Listing the Interface
	2.5. Calling an Operation
	2.6. Sending a Operation
	2.7. Changing Values
	2.8. Reading and Writing Ports
	2.9. Last Words

	3. Creating a Basic Component
	3.1. Task Application Code
	3.2. Starting a Component
	3.2.1. Periodic Execution
	3.2.2. Default Component Execution Semantics

	3.3. Data Flow Ports
	3.3.1. Which data can be transfered ?
	3.3.2. Setting up the Data Flow Interface
	3.3.3. Guaranteeing Real-Time data flow
	3.3.4. Using the Data Flow Interface in C++
	3.3.5. Using Data Flow in Scripts

	3.4. The OperationCaller/Operation Interface
	3.4.1. Call versus Send: the OperationCaller object
	3.4.2. Calling/Sending Operations in Scripts
	3.4.3. Overview: Who's executing the operation ?
	3.4.4. Executing methods in real-time.
	3.4.5. Operation Argument and Return Types

	3.5. The Attributes and Properties Interface
	3.5.1. Adding Task Attributes or Properties
	3.5.2. Accessing Task Attributes or Properties in C++
	3.5.3. Accessing Task Attributes in Scripts
	3.5.4. Reading and writing Task Properties from XML

	3.6. A TaskContext's Error states
	3.6.1. Error States Example

	4. Connecting Services
	4.1. Connecting Peer Components
	4.2. Setting up the Data Flow
	4.3. Disconnecting Tasks

	5. Providing and Requiring Services
	6. Using Tasks
	6.1. Task Property Configuration and XML format
	6.2. Task Scripts
	6.2.1. Program Scripts
	6.2.2. State Machines

	7. Deploying Components
	7.1. Overview
	7.2. Embedded TaskCore Deployment
	7.3. Embedded TaskContext Deployment: C++ Interface
	7.4. Full TaskContext Deployment: Dynamic Interface
	7.5. Putting it together

	8. Advanced Techniques
	8.1. Polymorphism : Task Interfaces
	8.1.1. Step 1 : Export the interface
	8.1.2. Step 2 : Inherit from the new interface
	8.1.3. Step 3 : Add the task to other tasks
	8.1.4. Step 4 : Use the task's interface

	Chapter 3. Orocos RTT Scripting Reference
	1. Introduction
	2. General Scripting Concepts
	2.1. Comments
	2.2. Identifiers
	2.3. Expressions
	2.3.1. Literals
	2.3.2. Constants, Variables and Aliases
	2.3.3. Strings and Arrays
	2.3.4. Operators
	2.3.5. The '.' Operator

	2.4. Parsing and Loading Programs
	2.4.1. In the TaskBrowser
	2.4.2. In C++ code

	3. Orocos Program Scripts
	3.1. Program Execution Semantics
	3.2. Program Syntax
	3.2.1. program
	3.2.2. Variables and Assignments
	3.2.3. The if then else Statement
	3.2.4. The for Statement
	3.2.5. The while Statement
	3.2.6. The break Statement
	3.2.7. Invoking Task Operations
	3.2.8. Try ... Catch statements

	3.3. Setting Task Attributes and Properties
	3.4. function
	3.5. Calling functions
	3.6. return
	3.7. Waiting : The 'yield' statement

	4. Starting and Stopping Programs from scripts
	5. Orocos State Descriptions : The Real-Time State Machine
	5.1. Introduction
	5.2. StateMachine Mechanism
	5.2.1. Reactive Mode: State Change Semantics
	5.2.2. Automatic Mode: State Change Semantics

	5.3. Parsing and Loading StateMachines
	5.3.1. In the TaskBrowser
	5.3.2. In C++ code

	5.4. Defining StateMachines
	5.4.1. The state Statement
	5.4.2. The entry and exit Statements
	5.4.3. The run Statement
	5.4.4. The handle and transition Statement
	5.4.5. State Preconditions
	5.4.6. Data Flow Event Transitions

	5.5. Instantiating Machines: SubMachines and RootMachines
	5.5.1. Root Machines
	5.5.2. Parameters and public variables
	StateMachine public variables
	StateMachine parameters

	5.5.3. Building Hierarchies : SubMachines
	Instantiating SubMachines
	SubMachine manipulating

	5.6. Starting and Stopping StateMachines from scripts
	5.6.1. On Reactive Mode Commands
	5.6.2. Automatic Mode Commands

	6. Program and State Example

	Chapter 4. Distributing Orocos Components with CORBA
	1. The CORBA Transport
	2. Setup CORBA Naming (Required!)
	3. Connecting CORBA components
	4. In-depth information
	4.1. Status
	4.2. Limitations

	5. Code Examples
	6. Timing and time-outs
	7. Orocos Corba Interfaces
	8. The Naming Service
	8.1. Example

	Chapter 5. Real-time Inter-Process Data Flow using MQueue
	1. Overview
	1.1. Status
	1.2. Requirements and Setup

	2. Transporting user types.
	2.1. Transporting 'simple' data types
	2.2. Transporting 'complex' data types

	3. Connecting ports using the MQueue transport
	3.1. Bare C++ connection
	3.2. CORBA managed connections

	Chapter 6. Core Primitives Reference
	1. Introduction
	2. Activities
	2.1. Executing a Function Periodically
	2.2. Non Periodic Activity Semantics
	2.3. Selecting the Scheduler
	2.4. Custom or Slave Activities
	2.5. Configuring the Threads from Activities

	3. Signals
	3.1. Signal Basics
	3.2. setup() and the Handle object

	4. Time Measurement and Conversion
	4.1. The TimeService
	4.2. Usage Example

	5. Attributes
	6. Properties
	6.1. Introduction
	6.2. Grouping Properties in a PropertyBag
	6.3. Marshalling and Demarshalling Properties (Serialization)

	7. Extra Stuff
	7.1. Buffers and DataObjects
	7.1.1. Buffers
	7.1.2. DataObjects

	8. Logging

	Chapter 7. OS Abstraction Reference
	1. Introduction
	1.1. Real-time OS Abstraction

	2. The Operating System Interface
	2.1. Basics

	3. OS directory Structure
	3.1. The RTAI/LXRT OS target
	3.2. Porting Orocos to other Architectures / OSes
	3.3. OS Header Files

	4. Using Threads and Real-time Execution of Your Program
	4.1. Writing the Program main()
	4.2. The Orocos Thread
	4.2.1. Threads
	4.2.2. Setting the Scheduler and Priorities.
	4.2.3. ThreadScope: Oscilloscope Monitoring of Orocos Threads

	4.3. Synchronisation Primitives
	4.3.1. Mutexes
	4.3.2. Signals and Semaphores
	4.3.3. Compare And Swap (CAS)

	Chapter 8. Hardware Device Interfaces
	1. The Orocos Device Interface (DI)
	1.1. Structure
	1.2. Example

	2. The Device Interface Classes
	2.1. Physical IO
	2.2. Logical Device Interfaces

	3. Porting Device Drivers to Device Interfaces
	4. Interface Name Serving

