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Major Concepts

 - that have all members as publics
 - that are not templated
 - that have no parent class

typegen can use C++ types ...

Data Types

 - must be default constructible 
 - must be copy-able
 - may be primitive types, structs, sequences 
   (std::vector or [] ) or any combination

Orocos C++ types ...

 - required for each data type to be usable
 - generated by typegen if possible
 - hand-written in other cases

typekits are ...

Transports
 - connect Orocos components to other
   robotics frameworks or protocols
 - handle Orocos data types over a given
   protocol
 - can support streaming, connection-oriented
   or service-oriented communication
 - may or may not be hard real-time

Component
 - exposes an algorithm to the rest of the
   software
 - defines inputs, outputs and parameters
 - is run by an activity
 - is compiled into a library
 - offers and uses services
 - installs in lib/orocos

Package
 - is a directory on your filesystem
 - contains one or more component,
   plugin or typekit libraries
 - contains a manifest.xml file
 - can be installed or used in-place

Service
 - a collection of flow ports, properties and
   operations
 - is provided to and required by others
 - can be loaded at run-time in a component

Properties
 - are structured name-value pairs
 - are the run-time parameters
 - can be serialized to XML

Flow Ports
 - publish and receive data for algorithms
 - are In or Out and of a given data type
 - Outs are send-and-forget
 - Ins can wake us up (triggering)

Operations
 - are plain C/C++ functions
 - are 'sent' or 'called'
 - run in the caller's thread or the 
   component's thread
 - are grouped into service objectsDeployment

 - description of a (part of) an application
 - in an XML or script (ruby, rtt, Lua) file
 - creates, connects, configures
   and starts components
 - allocates threads and sets connection
   policies 

Connection Policy
 - defines the connection between an
   Input and Output port
 - defines data buffering, locking mechanism,
   and initial state
 - allows to specify a transport
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Stopped

start()
startHook() stop()

stopHook()

Pre-
Operational

Constructor

configure()
configureHook()

cleanup()
cleanupHook()

user code
public API

Fatal
Error

fatal()

Running trigger/update()
updateHook()
or
errorHook()

Destructor

C++ Exceptions: 
  - in all *Hook(): let the transition fail

Exception: recover() will enter PreOperational
FatalError: No recovery possible

Exception

exception() OR C++ exception in any Hook
exceptionHook()

recover()

Calls stopHook() & cleanupHook(),
depending on actual state.

Only state in which ExecutionEngine
is stopped too.
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An Activity object executes
the ExecutionEngine, 
which in turn processes
incoming messages, plugin 
functions and finally 
updateHook() is called.
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void updateHook()
{
     // your code
}

calls
in Running state
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