
OROCOS Cheat Sheet
sheet v1.0

Major Concepts

 - that have all members as publics
 - that are not templated
 - that have no parent class

typegen can use C++ types ...

Data Types

 - must be default constructible
 - must be copy-able
 - may be primitive types, structs, sequences
 (std::vector or []) or any combination

Orocos C++ types ...

 - required for each data type to be usable
 - generated by typegen if possible
 - hand-written in other cases

typekits are ...

Transports
 - connect Orocos components to other
 robotics frameworks or protocols
 - handle Orocos data types over a given
 protocol
 - can support streaming, connection-oriented
 or service-oriented communication
 - may or may not be hard real-time

Component
 - exposes an algorithm to the rest of the
 software
 - defines inputs, outputs and parameters
 - is run by an activity
 - is compiled into a library
 - offers and uses services
 - installs in lib/orocos

Package
 - is a directory on your filesystem
 - contains one or more component,
 plugin or typekit libraries
 - contains a manifest.xml file
 - can be installed or used in-place

Service
 - a collection of flow ports, properties and
 operations
 - is provided to and required by others
 - can be loaded at run-time in a component

Properties
 - are structured name-value pairs
 - are the run-time parameters
 - can be serialized to XML

Flow Ports
 - publish and receive data for algorithms
 - are In or Out and of a given data type
 - Outs are send-and-forget
 - Ins can wake us up (triggering)

Operations
 - are plain C/C++ functions
 - are 'sent' or 'called'
 - run in the caller's thread or the
 component's thread
 - are grouped into service objectsDeployment

 - description of a (part of) an application
 - in an XML or script (ruby, rtt, Lua) file
 - creates, connects, configures
 and starts components
 - allocates threads and sets connection
 policies

Connection Policy
 - defines the connection between an
 Input and Output port
 - defines data buffering, locking mechanism,
 and initial state
 - allows to specify a transport

Component Lifecycle StateMachine

Stopped

start()
startHook() stop()

stopHook()

Pre-
Operational

Constructor

configure()
configureHook()

cleanup()
cleanupHook()

user code
public API

Fatal
Error

fatal()

Running trigger/update()
updateHook()
or
errorHook()

Destructor

C++ Exceptions:
 - in all *Hook(): let the transition fail

Exception: recover() will enter PreOperational
FatalError: No recovery possible

Exception

exception() OR C++ exception in any Hook
exceptionHook()

recover()

Calls stopHook() & cleanupHook(),
depending on actual state.

Only state in which ExecutionEngine
is stopped too.

NOMINAL EXCEPTIONAL

Service

Flow Port

Property marshalling
Configure parameters

InputPort

Receive data Publish data

OutputPort

TaskContext

An Activity object executes
the ExecutionEngine,
which in turn processes
incoming messages, plugin
functions and finally
updateHook() is called.

Activity
runs

processes
Asynchr. Operations

calls
Plugin Functions

void updateHook()
{
 // your code
}

calls
in Running state

- period
- priority
- scheduler

Exec.
Engine

Operation

Expose functions

Component Architecture

trigger

