Seminar and Hands-On on Orocos

Peter Soetens, FMTC

Flanders’ Mechatronics Technology Centre
Leuven

5th April 2006
Videncenter for Teknologisk Innovation
Outline

1 Orocos Applications
 - Machine Control
 - Adaptive Control
 - Shared Control
 - Vision Integration
 - Distributed Control

2 Orocos Introduction

3 Pause

4 Use Case: “RoboCatcher”

5 Getting Started with Orocos
Outline

1. Orocos Applications
 - Machine Control
 - Adaptive Control
 - Shared Control
 - Vision Integration
 - Distributed Control

2. Orocos Introduction

3. Pause

4. Use Case: “RoboCatcher”

5. Getting Started with Orocos

Peter Soetens, FMTC
http://www.Orocos.org
Axes Control

Peter Soetens, FMTC

http://www.Orocos.org
Constraint Based Control
Outline

1. Orocos Applications
 - Machine Control
 - Adaptive Control
 - Shared Control
 - Vision Integration
 - Distributed Control

2. Orocos Introduction

3. Pause

4. Use Case: “RoboCatcher”

5. Getting Started with Orocos
Online learning

Peter Soetens, FMTC http://www.Orocos.org
Outline

1. Orocos Applications
 - Machine Control
 - Adaptive Control
 - Shared Control
 - Vision Integration
 - Distributed Control

2. Orocos Introduction

3. Pause

4. Use Case: “RoboCatcher”

5. Getting Started with Orocos

Peter Soetens, FMTC http://www.Orocos.org
Placing a Car Window

Peter Soetens, FMTC

http://www.Orocos.org
Outline

1. Orocos Applications
 - Machine Control
 - Adaptive Control
 - Shared Control
 - Vision Integration
 - Distributed Control

2. Orocos Introduction

3. Pause

4. Use Case: “RoboCatcher”

5. Getting Started with Orocos

Peter Soetens, FMTC http://www.Orocos.org
Milling a Human Bone
Outline

1. Orocos Applications
 - Machine Control
 - Adaptive Control
 - Shared Control
 - Vision Integration
 - Distributed Control

2. Orocos Introduction

3. Pause

4. Use Case: “RoboCatcher”

5. Getting Started with Orocos
Orocos Applications

Orocos Introduction Pause Use Case: “RoboCatcher”

Getting Started with Orocos

Summary

Machine Control
Adaptive Control
Shared Control
Vision Integration

Distribution in progress...

Middleware for Machine Control

OS

Device

Peter Soetens, FMTC
http://www.Orocos.org
Freely available on:
http://www.orocos.org
Coffee Break
RoboCatcher: Research Application

Peter Soetens, FMTC
http://www.Orocos.org
RoboCatcher: Requirements

- **Software Framework**
 - Modular - Component Based
 - Online reconfiguration
 - User interactivity
 - Real-Time

- **Application Code**
 - Camera capturing
 - Car image recognition
 - Car state estimation
 - Online trajectory generation
 - Robot kinematics algorithm
 - Robot/gripper interfacing
RoboCatcher: Without Orocos

Camera Driver -> Image Recognition

Image Recognition -> Kalman Filter

Camera Driver -> Image

Image Recognition -> Car Location

Kalman Filter -> Robot

User Application -> Trajectory Generator

Trajectory Generator -> Robot

User Application -> Target Frame

Target Frame -> Trajectory Generator

Target Frame -> Kinematics

Trajectory Generator -> Robot

Joint Position Output -> Tool Frame

Joint Velocity Output -> Robot

Robot -> Gripper

"Classical" Component Application Setup

Peter Soetens, FMTC

http://www.Orocos.org
RoboCatcher: With Orocos

- Camera Driver
- Image Recognition
- Kalman Filter
- Trajectory Generator
- Joint Vel. Output
- Robot
- Gripper

Orocos Applications
Orocos Introduction
Pause
Use Case: "RoboCatcher"

Getting Started with Orocos

Peter Soetens, FMTC
http://www.Orocos.org
RoboCatcher: Camera

Data Flow:
Image Connection

Image Recognition

Camera Driver

bool fetchImage() command

Image* getImage() method

Execution Flow:
'methods' and 'commands'
Camera Methods

Methods: Synchronously *call*

Component Activity

Recognition Component (a)

Call Method: `getimage()`

Camera Component (b)
Camera Commands

Commands: Asynchronous send

Component Activity

Recognition Component (a)

Send Command: "fetchImage"

Camera Component (b)

Command Queue

Check
Completion Condition: imageFetched()
Camera Execution Flow

Methods: Synchronously *call*

- Call Method: `getimage()`

- Recognition Component (a)

- Camera Component (b)

Commands: Asynchronous *send*

- Send Command: "fetchImage"

- Check Completion Condition: `imageFetched()`

- Execute Command: `fetchimage()`

- Check Queue

- Command Queue

Peter Soetens, FMTC
http://www.Orocos.org
RoboCatcher: With Orocos

Orocos Applications Orocos Introduction Pause Use Case: "f"

Peter Soetens, FMTC
http://www.Orocos.org
RoboCatcher: Kinematics

Trajectory Generator

- moveTo(p,t)
- moveJoint(q,r,v)
- start()/stop() methods

Joint Vel. Output

q_dot

to Robot

Connection from Kalman Filter

q6_robot Data Port

Online Interpolator

- target (p,t) Data Port
- start()/stop() methods

Joint Vel. Output

Kinematics

- getEndPosition() method
- getEndTwist() methods
- inverseVel(t,q_dot) method

Gripper

- getFrame() method
- open()/close() commands

q6_robot Data Port

q6_robot

Peter Soetens, FMTC
http://www.Orocos.org
RoboCatcher: With Orocos

Orocos Applications Orocos Introduction Pause Use Case: “RoboCatcher”

Getting Started with Orocos

Summary

RoboCatcher: With Orocos

Peter Soetens, FMTC

http://www.Orocos.org
RoboCatcher: Application Logic

Application Component

- Off
- Startup
- Shutdown
- Position Robot
- MoveToCar
- SafeStop
- Track&Grasp
- Real-Time State Machines

Real-Time Communication

http://www.Orocos.org
Orocos offers

- a software toolkit for building real-time components
- rich online browsable component interface
- user defined real-time state machines

Further Reference:
http://www.orocos.org