
1

Extending the Real-Time Toolkit
with your own Data Types

Copyright © 2006,2007,2009, 2010 Peter Soetens, FMTC, Peter Soetens, The SourceWorks

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published
by the Free Software Foundation, with no Invariant Sections, with no Front-Cover
Texts, and with no Back-Cover Texts. A copy of this license can be found at http://
www.fsf.org/copyleft/fdl.html.

Revision History
Revision 2.0.1 7 Sept 2010 ps

Updated status of typegen
Revision 2.0.0 21 Jun 2010 ps

Reworked for RTT-2.0
Revision 1.8.0 5 Feb 2009 ps

Added Dot operator and toolkit plugin examples
Revision 1.0.1 24 Nov 2006 ps

Separated from the Developer's Manual.

Abstract

This document is an introduction to making user defined types (classes) visible within Orocos. You
need to read this document when you want to see the value of an object you defined yourself, for ex-
ample in the TaskBrowser component or in an Orocos script. Other uses are reading and writing ob-
jects to and from XML and generally, anything a built-in Orocos type can do, so can yours.

Table of Contents
1. The Orocos Type System : Typekits .. 1

1.1. Loading Typekits ... 2
1.2. Generating Typekits ... 2

2. Creating a Typekit in C++ .. 3
2.1. Telling the RTT about a struct ... 3
2.2. Telling the RTT about a complex data type ... 5
2.3. Struct versus Sequence .. 6
2.4. Displaying and Reading ... 7
2.5. Reading/Writing data from/to XML .. 8
2.6. Network transfer using CORBA ... 10

3. Building your own Typekit ... 11
3.1. Loading Operators ... 12
3.2. Loading Constructors ... 13

1. The Orocos Type System : Typekits
Most applications define their own classes or structs to exchange data between components.
It is easy to tell the RTT about these user defined types such that they can be displayed, stored
to XML, used in the scripting engine and transfered between processes or over a network
connection.

http://www.fsf.org/copyleft/fdl.html
http://www.fsf.org/copyleft/fdl.html

Extending the Real-Time Toolkit with your own Data Types

2

1.1. Loading Typekits
Orocos uses the 'Typekit' principle to make it aware of user types. The RTT's typekit has
built-in support for the C++ types int,unsigned int,double,float, char,bool, vector<double>
and string. The idea is that user contributed typekits are added at runtime.

A typekit is loaded as a plugin, as shown in the RTT Plugin Manual, from the types sudi-
rectories of the RTT_COMPONENT_PATH directories. In case you want to load typekits
manually, you can use the plugin::PluginLoader class which manages all loading and locat-
ing of RTT plugins.

1.2. Generating Typekits
There are two tools available to generate Typekits for users. The primary one is typegen,
which generates typekits from existing C++ structs defined in headers. The second is based
on ROS, and generates typekits for ROS Messages (which are used in ros topics).

This table lists the pro's and con's of these two approaches:

Table 1. Typekit generators

Generator Pro's Con's Status

typegen • Works with exist-
ing C++ classes

• Stable and tested

• Usable with the
CORBA transport

• Usable with the
mqueue transport

• Usable for script-
ing, XML.

• Requires all data
members to be pub-
lic

• Ignores base class-
es and all data with-
in

• Does not handle
typedefs

• Requires to be built
with 'autoproj'

• Does not provide
scripting construc-
tors or operators

Available for RTT
2.x, Available for
RTT 1.x

rosgen • Compatible with
ROS messages

• Easy to use
with many prede-
fined data struc-
tures available.

• Can not be used
with existing C++
data types

• Depends on ROS

• Not compatible
with the CORBA
or mqueue trans-
port

• Does not provide
scripting construc-
tors or operators

Not available for RTT
1.x, Available for
RTT 2.x.

Extending the Real-Time Toolkit with your own Data Types

3

Important

These tools are mature for most applications and users should only write typekits
by hand if they want to extend beyond what typegen/rosgen offer. In practice,
this means writing a typekit for a complex data type or adding specialized con-
structors or operators for scripting.

1.2.1. Using typegen

Typegen requires that you have built the Orocos Toolchain with autoproj and that you have
'sourced' the env.sh file in your shell. You can use typegen as such:

 cd myproject/src
 typegen -o types myproject MyData.hpp

Which will create a directory types which contains all necessary files to build the typekit
with name myproject for all classes and structs defined in MyData.hpp. You can list more
than one header such that they are handled by the same typekit.

To test your typekit, you can do afterwards:

 cd myproject/src/types
 CMAKE_INSTALL_PREFIX=/opt/orocos CMAKE_PREFIX_PATH=/opt/orocos cmake .
 make install

These variables tell cmake where to find Orocos and where to install the typekit:

• CMAKE_INSTALL_PREFIX : where to install to (a single directory)

• CMAKE_PREFIX_PATH : where to look for the installed Orocos Toolchain (a list of
directories, similar to the PATH variable)

After make install finishes, you will see that your data types show up in the deployer and
taskbrowser applications, provided that the RTT_COMPONENT_PATH variable contains
the '/opt/orocos/lib/orocos' directory (= CMAKE_PREFIX_PATH + lib/orocos).

1.2.2. Using rosgen

Under development. Consult the mailinglist or the wiki pages for this tool. Announce-
ment [http://www.ros.org/news/2010/09/first-development-release-of-orocos-toolchain-ros-
v010.html].

2. Creating a Typekit in C++
Important

Only continue here if you are sure you can not use typegen/rosgen !

In case you don't use any of the typekit generators, you need to write a typekit yourself. This
has been simplified in RTT 2.x, but the hardest part remains providing network transport for
data types.

2.1. Telling the RTT about a struct
Say that you have an application which transfers data in a struct ControlData :

http://www.ros.org/news/2010/09/first-development-release-of-orocos-toolchain-ros-v010.html
http://www.ros.org/news/2010/09/first-development-release-of-orocos-toolchain-ros-v010.html
http://www.ros.org/news/2010/09/first-development-release-of-orocos-toolchain-ros-v010.html
http://www.ros.org/news/2010/09/first-development-release-of-orocos-toolchain-ros-v010.html

Extending the Real-Time Toolkit with your own Data Types

4

 /** Note: you may also use 'class' instead of 'struct': */
 struct ControlData {
 double x, y, z;
 int sample_nbr;
 };

When you would use a DataPort<ControlData> and ask the taskbrowser to display the data
port. You would see:

 ... unknown_t ...

instead of ControlData. The RTT has no clue on the name of your data and how to display it.

How can you tell the RTT how to handle this data type? In case your data type is a struct
and allows public read/write access to its data members, you are encouraged to use the form:
types::StructTypeInfo<ClassName>. Read it as: provide RTT type information for this class
or struct.

This type info kind requires a helper function which is compabible with the
boost::serialization library (and must be declared in that namespace) and which is easy to
write:

 #include <rtt/types/StructTypeInfo.hpp>

 namespace boost {
 namespace serialization {
 // The helper function which you write yourself:
 template<class Archive>
 void serialize(Archive & a, ControlData & cd, unsigned int) {
 using boost::serialization::make_nvp;
 a & make_nvp("x", cd.x);
 a & make_nvp("y", cd.y);
 a & make_nvp("z", cd.z);
 a & make_nvp("sample_nbr", cd.sample_nbr);
 }
 }
 }

 // The RTT helper class which uses the above function behind the scenes:
 struct ControlDataTypeInfo
 : public RTT::types::StructTypeInfo<ControlData>
 {
 ControlDataTypeInfo()
 : RTT::types::StructTypeInfo<ControlData>("ControlData")
 {}
 };

 // Tell the RTT the name and type of this struct:
 RTT::types::Types()->addType(new ControlDataTypeInfo());

Note

In case you write your serialize with 'getter' functions, for example,

cd.getX()

, the getX() function must return a reference to x, i.e. have the signature: x&
getX(). Returning const x& getX() or x getX() will not work and the code will
not compile.

Extending the Real-Time Toolkit with your own Data Types

5

From now on, the RTT knows the 'ControlData' type name and allows you to write it to XML,
use it in scripts and access its member variables. For example, you may write in a script:

 var ControlData mycd;
 mycd.x = 2 * mycd.y = 2 * mycd.z = 1; // (x,y,z)=(4,2,1)
 mycd.sample_nbr = 1;

 var ControlData mycd2 = mycd;
 // ...

Note

The type is now usable as a 'var' in a script, however, you may need to add a
constructor as well. See Section 3.2, “Loading Constructors”.

If your struct or class contains other complex types, for example, ControlData's sample_nbr
field is a struct 'Sample' itself, you need to apply the same method for that struct: create a
serialize() function and register the type with the StructTypeInfo class. In case one of the
fields is an array or sequence type, another approach is taken, as explained below.

2.2. Telling the RTT about a complex data type
It is not recommended to use complex data types for communicating between components.
Especially if your data contains pointers to other data, it is possible that it can't be sent be-
tween components. This section tells you how you can add 'whatever' type to a typekit, but
you'll have to implement all functions yourself.

Reasons to follow this path are:

• It's impossible to provide a serialize() function.

• You want full control over XML format, member access in scripting etc.

• The XML and scripting representations look different.

It is however recommend to use the StructTypeInfo if a serialize() function can be written,
and then to override the required functions as shown in the next sections.

Complex classes must be carefully written such that they contain:

• A default constructor

• A copy constructor that can initialize a default constructed object

 /** class has read-only members */
 class ControlClass {
 const int joints;
 public:
 // Mandatory !
 ControlClass() : joints(-1) {}
 // Mandatory !
 ControlClass(const ControlClass& orig) : mjoints(orig.mjoints) {}

 ControlClass(int joints) : mjoints(joints)
 int getJoints() { return joints; }
 };

Extending the Real-Time Toolkit with your own Data Types

6

The way to add this type to the typekit is by inheriting from the
types::TemplateTypeInfo<ControlClass> class and then to specialize one by one the required
functions, as explained in the next sections:

 // The RTT helper class for any class which has default constructor and copy constructor:
 struct ControlClassTypeInfo
 : public RTT::types::TemplateTypeInfo<ControlClass>
 {
 ControlClassTypeInfo()
 : RTT::types::TemplateTypeInfo<ControlClass>("ControlClass")
 {}

 // Note: you'll have to implement virtual functions here,
 // as documented by the types::TypeInfo class.
 };

 // Tell the RTT the name and type of this class:
 RTT::types::Types()->addType(new ControlClassTypeInfo());

2.3. Struct versus Sequence
The ControlData struct is clearly a 'struct' in the C/C++ sense. But sometimes, you have
datatypes that behave more like sequences. For example, a std::vector<ControlData> or a
ControlData[100] field in another struct. In that case, we register the resulting type as a
types::SequenceTypeInfo<ClassName>. For example:

 #include <rtt/types/SequenceTypeInfo.hpp>
 #include <rtt/types/CArrayTypeInfo.hpp>
 #include <rtt/types/BoostArrayTypeInfo.hpp>

 // Register a std::vector<ControlData> (or compatible) :
 RTT::types::Types()->addType(new types::SequenceTypeInfo<std::vector<ControlData>
 >("std.vector<ControlData>"));

 // Register a C-Array ControlData[N] or ControlData* :
 RTT::types::Types()->addType(new types::CArrayTypeInfo<types::carray<ControlData>
 >("ControlData[]"));

 // Register a Boost-Array boost::array<ControlData> :
 RTT::types::Types()->addType(new types::BoostArrayTypeInfo<boost::array<ControlData>
 >("boost.array<ControlData>"));

Note that we have adapted TypeInfo's type name argument to fit the scripting type name
syntax.

In case a type is one of these sequence, it does not need to provide a serialize() function !

Here's a complete example of combining a Struct and a Sequence:

 #include <rtt/types/SequenceTypeInfo.hpp>
 #include <rtt/types/StructTypeInfo.hpp>
 #include <rtt/types/CArrayTypeInfo.hpp>

 struct ControlData {
 double x, y, z;
 int sample_nbr;
 };

Extending the Real-Time Toolkit with your own Data Types

7

 struct ControlDataSet {
 // warning: strings may render your type non-real-time.
 string setname;

 // Variable size data set:
 vector<ControlData> dataset;

 // Fixed size array:
 unsigned int timestamp[2];
 };

 namespace boost {
 namespace serialization {
 // The helper function which you write yourself for ControlData:
 template<class Archive>
 void serialize(Archive & a, ControlData & cd, unsigned int) {
 using boost::serialization::make_nvp;
 a & make_nvp("x", cd.x);
 a & make_nvp("y", cd.y);
 a & make_nvp("z", cd.z);
 a & make_nvp("sample_nbr", cd.sample_nbr);
 }

 // The helper function which you write yourself for ControlDataSet:
 template<class Archive>
 void serialize(Archive & a, ControlDataSet & cds, unsigned int) {
 using boost::serialization::make_nvp;
 using boost::serialization::make_array;
 a & make_nvp("setname", cds.setname);
 a & make_nvp("dataset", cds.dataset);

 // NOTE: we require 'make_array' + size of array for fixed size arrays.
 a & make_nvp("timestamp", make_array(cds.timestamp, 2));
 }
 }
 }

 // Tell the RTT the name and type of a struct:
 RTT::types::Types()->addType(new types::StructTypeInfo<ControlData>("ControlData"));
 // Register a std::vector (or compatible) for ControlData:
 RTT::types::Types()->addType(new types::SequenceTypeInfo<std::vector<ControlData>
 >("std.vector<ControlData>"));

 // Register an array for unsigned ints (NOTE: use of types::carray<unsigned int> instead of
 'unsigned int'):
 RTT::types::Types()->addType(new types::CArrayTypeInfo<types::carray<unsigned int>
 >("uint[]"));

 // Tell the RTT the name and type of a struct:
 RTT::types::Types()->addType(new types::StructTypeInfo<ControlDataSet>("ControlDataSet"));

2.4. Displaying and Reading
There is no default implementation for reading or writing your data to a stream. You need
to implement this yourself. This is optional for most types, since most code will use the
introspection functions (getMember()) of your type to learn about the internals.

Extending the Real-Time Toolkit with your own Data Types

8

In order to tell the RTT how to display your type, you may overload the TypeInfo::read and
TypeInfo::write functions OR define operator<<() and operator>>() for your type (preferred).
The code below shows the latter option:

 #include <rtt/types/StructTypeInfo.hpp>
 #include <ostream>
 #include <istream>

 // Displaying:
 std::ostream& operator<<(std::ostream& os, const ControlData& cd) {
 return os << '('<< cd.x << ',' << cd.y << ',' << cd.z << '): ' << cd.sample_nbr;
 }

 // Reading :
 std::istream& operator>>(std::istream& is, ControlData& cd) {
 char c;
 return is >> c >> cd.x >> c >> cd.y >> c >> cd.z >> c >> c >> cd.sample_nbr; // 'c' reads '(' ',' ','
 ')' and ':'
 }
 // ...
 // The 'true' argument means: it has operator<< and operator>>
 struct ControlDataTypeInfo
 : public RTT::types::StructTypeInfo<ControlData,true>
 {
 ControlDataTypeInfo()
 : RTT::types::StructTypeInfo<ControlData,true>("ControlData")
 {}
 };

 // Tell the RTT the name and type of this struct
 RTT::types::Types()->addType(new ControlDataTypeInfo());

If you use the above line of code to add the type, the RTT will be able to display it as well, for
example in the TaskBrowser. Other subsystems may use your operators to exchange data in a
text-based form. However, in order to 'construct' your type in a script or at the TaskBrowser
prompt, you need to add a constructor as shown in Section 3.2, “Loading Constructors”.

2.5. Reading/Writing data from/to XML
Every data type that has been defined using the StructTypeInfo and a proper serialization
function, can be written to XML. The ControlStruct data type will be encoded like this:

 <struct name="MyData" type="ControlData">
 <simple name="x" type="double">
 <value>0.12</value>
 </simple>
 <simple name="y" type="double">
 <value>1.23</value>
 </simple>
 <simple name="z" type="double">
 <value>3.21</value>
 </simple>
 <simple name="sample_nbr" type="short">
 <value>3123</value>
 </simple>
 </struct>

Extending the Real-Time Toolkit with your own Data Types

9

In case you didn't use the StructTypeInfo or you want to override the default you may im-
plement the composeType() and decomposeType() functions of the types::TypeInfo class,
which is explained in the next two sections.

2.5.1. Changing how your data is written to XML

In case the default XML format is not good for you, or you inherited from TemplateTypeInfo,
you need to inform Orocos of the structure of your data type. It must be given a 'decompose'
function: Of which primitive types does the data consists ? Representing structured data
is what Orocos Property objects do. Here is how to tell Orocos how the "ControlData" is
structured:

 // We use StructTypeInfo, so we override the defaults...
 struct ControlDataTypeInfo
 : public StructTypeInfo<ControlData,true>
 {
 // ... other functions omitted

 // this is a helper function, which is called by composeType() of the same class:
 virtual bool decomposeTypeImpl(const ControlData& in, PropertyBag& targetbag) const {
 targetbag.setType("ControlData");
 targetbag.add(new Property<double>("X", "X value of my Data", in.x));
 targetbag.add(new Property<double>("Y", "Y value of my Data", in.y));
 targetbag.add(new Property<double>("Z", "Z value of my Data", in.z));
 targetbag.add(new Property<int>("Sample", "The sample number of the Data",
 in.sample_nbr));
 return true;
 }
 }

This function reads as such: For each member of your struct, add a Property of the correct type
to the targetbag and initialize it with the value of the 'in' parameter. setType() is mandatory
and can be used lateron to determine the version or type of your XML representation. Next,
if Orocos tries to write an XML file with ControlData in it, it will look like:

 <struct name="MyData" type="ControlData">
 <simple name="X" type="double">
 <description>X value of my Data</description>
 <value>0.12</value>
 </simple>
 <simple name="Y" type="double">
 <description>Y value of my Data</description>
 <value>1.23</value>
 </simple>
 <simple name="Z" type="double">
 <description>Z value of my Data</description>
 <value>3.21</value>
 </simple>
 <simple name="Sample" type="short">
 <description>The sample number of the Data</description>
 <value>3123</value>
 </simple>
 </struct>

Extending the Real-Time Toolkit with your own Data Types

10

2.5.2. Changing how data is read from XML

When you modified the default writing to XML, you probably need to modify the default
reading as well. This step is called 'composition', and means: put all the individual XML
elements back into one data structure.

Here is how to tell Orocos how the "ControlData" is read:

 // ...
 struct ControlDataTypeInfo
 : public TemplateTypeInfo<ControlData,true>
 {

 // ... other functions omitted

 virtual bool composeTypeImpl(const PropertyBag& bag, ControlData& out) const
 {
 if (bag.getType() == std::string("ControlData")) // check the type
 {
 Property<double>* x = targetbag.getProperty("X");
 Property<double>* y = targetbag.getProperty("Y");
 Property<double>* z = targetbag.getProperty("Z");
 Property<int>* t = targetbag.getProperty("Sample");

 if (!x || !y || !z || !t)
 return false;

 out.x = x->get();
 out.y = y->get();
 out.z = z->get();
 out.sample_nbr = t->get();
 return true;
 }
 return false; // unknown type !
 }
 }

First the type is checked and then the properties are located in the bag, it should look just
like we stored them. If not, return false, otherwise, read the values and store them in the out
variable.

2.6. Network transfer using CORBA

In order to transfer your data between components using the CORBA network transport, the
RTT requires that you provide the conversion from your type to a CORBA::Any type and
back. This procedure is done automatically if you use orogen.

The first step is describing your struct in IDL and generate the 'client' headers with 'Any'
support. Next you create such a struct, fill it with your data type's data and next 'stream' it to
an Any. The other way around is required as well.

In addition, you will need the CORBA support of the RTT enabled in your build configura-
tion.

Extending the Real-Time Toolkit with your own Data Types

11

Note

This procedure is discussed in detail on the Orocos wi-
ki [http://www.orocos.org/wiki/rtt/simple-examples/developing-plugins-and-
toolkits/part-3-transport-plugin].

3. Building your own Typekit
The number of types may grow in your application to such a number or diversity that it may
be convenient to build your own typekit and make it a plugin. Non-Orocos libraries benefit
from this system as well because they can introduce their data types into Orocos.

Each typekit must define a class that inherits from the types::TypekitPlugin class and imple-
ment four functions: loadTypes(), loadConstructors, loadOperators() and getName().

The name of a typekit must be unique. Each typekit will be loaded no more than once. The
loadTypes function contains all 'StructTypeInfo' constructs to tell the RTT about the types
of your typekit. The loadOperators function contains all operations that can be performed on
your data such as addition ('+'), indexing ('[i]'), comparison ('==') etc. Finally, type construc-
tors are added in the loadConstructors function. They allow a newly created script variable
to be initialised with a (set of) values.

Mimick the code of the types::RealTimeTypekitPlugin to build your own.

Your typekit header file might look like:

 #ifndef ORO_MY_TYPEKIT_HPP
 #define ORO_MY_TYPEKIT_HPP

 #include <rtt/types/TypekitPlugin.hpp>

 namespace MyApp
 {
 /**
 * This interface defines the types of my application
 */
 class MyTypekitPlugin
 : public RTT::types::TypekitPlugin
 {
 public:
 virtual std::string getName();

 virtual bool loadTypes();
 virtual bool loadConstructors();
 virtual bool loadOperators();
 };
 }
 #endif

The mytypekit.cpp files looks like:

 #include "mytypekit.hpp"

 namespace MyApp {
 std::string MyTypekitPlugin::getName() { return "MyTypekit"; }

http://www.orocos.org/wiki/rtt/simple-examples/developing-plugins-and-toolkits/part-3-transport-plugin
http://www.orocos.org/wiki/rtt/simple-examples/developing-plugins-and-toolkits/part-3-transport-plugin
http://www.orocos.org/wiki/rtt/simple-examples/developing-plugins-and-toolkits/part-3-transport-plugin
http://www.orocos.org/wiki/rtt/simple-examples/developing-plugins-and-toolkits/part-3-transport-plugin

Extending the Real-Time Toolkit with your own Data Types

12

 bool MyTypekitPlugin::loadTypes() {
 // Tell the RTT the name and type of this struct
 RTT::types::Types()->addType(new ControlDataTypeInfo());
 }

 /** ...Add the other example code of this manual here as well... */
 bool MyTypekitPlugin::loadConstructors() {
 // ...
 }
 bool MyTypekitPlugin::loadOperators() {
 // ...
 }
 } // namespace MyApp

 /** Register the class as a plugin */
 ORO_TYPEKIT_PLUGIN(MyApp::MyTypekitPlugin);

Next compile the .cpp file as a shared library and put it in the types subdirectory of the
RTT_COMPONENT_PATH.

The Plugin Manual explains more in detail how plugins are located or can be loaded from C
++ code. The class that manages plugin loading is the plugin::PluginLoader.

3.1. Loading Operators

Some data types may support mathematical operations. In that case, you can register these
operators to the RTT type system such that you can use them in your scripts. In case your
type does not need such operations, this section can be skipped.

Operator are stored in the class OperatorRepository in Operators.hpp. The list of supported
operators is set by the typekit and added to the OperatorRepository It looks something like
this:

bool loadOperators() {
 OperatorRepository::shared_ptr oreg = RTT::operators();
 // boolean stuff:
 oreg->add(newUnaryOperator("!", std::logical_not<bool>()));
 oreg->add(newBinaryOperator("&&", std::logical_and<bool>()));
 oreg->add(newBinaryOperator("||", std::logical_or<bool>()));
 oreg->add(newBinaryOperator("==", std::equal_to<bool>()));
 oreg->add(newBinaryOperator("!=", std::not_equal_to<bool>()));
 return true;
}

Adding your own should not be terribly hard. The hardest part is that as the second argument
to newUnaryOperator, newBinaryOperator or newTernaryOperator, you need to specify a
STL Adaptable Functor, and even though the STL provides many predefined one's, it does not
provide all possible combinations, and you might end up having to write your own. The STL
does not at all provide any "ternary operators", so if you need one of those, you'll definitely
have to write it yourself.

Note that this section is only about adding overloads for existing operators, if you want to
add new operators to the scripting engine, the parsers need to be extended as well.

Extending the Real-Time Toolkit with your own Data Types

13

3.2. Loading Constructors
Constructors can only be added after a type has been loaded using addType. Say that the
ControlData struct has a constructor:

 struct ControlData {
 // Don't forget to supply the default constructor
 // as well.
 ControlData()
 : x(0), y(0), z(0), sample_nbr(0)
 {}
 ControlData(double a, double b, double c)
 : x(a), y(b), z(c), sample_nbr(0)
 {}
 double x, y, z;
 int sample_nbr;
 }

This constructor is not automatically known to the type system. You need to write a con-
structor function and add that to the type info:

 // This 'factory' function constructs one object.
 ControlData createCD(double a, double b, double c) {
 return ControlData(a,b,c);
 }

 // Tell the RTT a constructor is available:
 // Attention: "ControlData" must have been added before with 'addType' !
 RTT::types::Types()->type("ControlData")->addConstructor(newConstructor(&createCD));

From now on, one can write in a script:

 var ControlData cd = ControlData(3.4, 5.0, 1.7);

Multiple constructors can be added for the same type. The first one that matches with the
given arguments is then taken. For example:

 // Add 'ControlData(3.0)' constructor:
 ControlData createCD_2(double a) {
 return ControlData(a,a,a);
 }

 // Tell the RTT a constructor is available:
 RTT::types::Types()->type("ControlData")->addConstructor(newConstructor(&createCD_2));

	Extending the Real-Time Toolkit with your own Data Types
	Table of Contents
	1. The Orocos Type System : Typekits
	1.1. Loading Typekits
	1.2. Generating Typekits
	1.2.1. Using typegen
	1.2.2. Using rosgen

	2. Creating a Typekit in C++
	2.1. Telling the RTT about a struct
	2.2. Telling the RTT about a complex data type
	2.3. Struct versus Sequence
	2.4. Displaying and Reading
	2.5. Reading/Writing data from/to XML
	2.5.1. Changing how your data is written to XML
	2.5.2. Changing how data is read from XML

	2.6. Network transfer using CORBA

	3. Building your own Typekit
	3.1. Loading Operators
	3.2. Loading Constructors

